We study helical bodies of arbitrary cross-sectional profile as they swim or transport fluid by the passage of helical waves. Many cases are explored: the external flow problem of swimming in a cylindrical tube or an infinite domain, the internal fluid pumping problem, and confined/unconfined swimming and internal pumping in a viscoelastic (Oldroyd-B) fluid. A helical coordinate system allows for the analytical calculation of swimming and pumping speeds and fluid velocities in the asymptotic regime of nearly cylindrical bodies. In a Newtonian flow, a matched asymptotic analysis results in corrections to the swimming speed accurate to fourth-order in the small wave amplitude, and the results compare favorably with full numerical simulations. We find that the torque-balancing rigid body rotation generally opposes the direction of wave passage, but not always. Confinement can result in local maxima and minima of the swimming speed in the helical pitch, and the effects of confinement decrease exponentially fast with the diameter of the tube. In a viscoelastic fluid, we find that the effects of fluid elasticity on swimming and internal pumping modify the Newtonian results through the mode-dependent complex viscosity, even in a confined domain.

1.
E.
Lauga
and
T. R.
Powers
, “
The hydrodynamics of swimming microorganisms
,”
Rep. Prog. Phys.
72
,
096601
(
2009
).
2.
M. A.
Sleigh
,
Cilia and Flagella
(
Academic Press
,
1974
).
3.
J. R.
Blake
and
M. A.
Sleigh
, “
Mechanics of ciliary locomotion
,”
Biol. Rev.
49
,
85
125
(
1974
).
4.
C.
Brennen
and
H.
Winet
, “
Fluid mechanics of propulsion by cilia and flagella
,”
Annu. Rev. Fluid Mech.
9
,
339
398
(
1977
).
5.
K.
Drescher
,
K. C.
Leptos
,
I.
Tuval
,
T.
Ishikawa
,
T. J.
Pedley
, and
R. E.
Goldstein
, “
Dancing volvox: Hydrodynamic bound states of swimming algae
,”
Phys. Rev. Lett.
102
,
168101
(
2009
).
6.
C.
Linnaeus
,
Systema Naturae
, 10th ed. (
Salvii
,
Holmiae
,
1758
), Vol.
1
, p.
824
.
7.
I.
Jung
,
T. R.
Powers
, and
J. M.
Valles
, Jr.
, “
Evidence for two extremes of ciliary motor response in a single swimming microorganism
,”
Biophys. J.
106
,
106
113
(
2014
).
8.
K.
Fukui
and
H.
Asai
, “
Spiral motion of paramecium caudatum in a small capillary glass tube
,”
J. Eukaryotic Microbiol.
23
,
559
563
(
1976
).
9.
J.
Männik
,
R.
Driessen
,
P.
Galajda
,
J. E.
Keymer
, and
C.
Dekker
, “
Bacterial growth and motility in sub-micron constrictions
,”
Proc. Natl. Acad. Sci. U.S.A.
106
,
14861
14866
(
2009
).
10.
S.
Jana
,
S. H.
Um
, and
S.
Jung
, “
Paramecium swimming in capillary tube
,”
Phys. Fluids
24
,
041901
(
2012
).
11.
O. S.
Pak
,
S. E.
Spagnolie
, and
E.
Lauga
, “
Hydrodynamics of the double-wave structure of insect spermatozoa flagella
,”
J. R. Soc., Interface
9
,
1908
1924
(
2012
).
12.
J. B.
Waterbury
,
J. M.
Willey
,
D. G.
Franks
,
F. W.
Valois
, and
S. W.
Watson
, “
A cyanobacterium capable of swimming motility
,”
Science
230
,
74
76
(
1985
).
13.
K. M.
Ehlers
,
A. D.
Samuel
,
H. C.
Berg
, and
R.
Montgomery
, “
Do cyanobacteria swim using traveling surface waves?
,”
PNAS
93
,
8340
8343
(
1996
).
14.
H. A.
Stone
and
A. D. T.
Samuel
, “
Propulsion of microorganisms by surface distortions
,”
Phys. Rev. Lett.
77
,
4102
4104
(
1996
).
15.
B.
Brahamsha
, “
Non-flagellar swimming in marine Synechococcus
,”
J. Mol. Microbiol. Biotechnol.
1
,
59
62
(
1999
).
16.
K.
Ehlers
and
G.
Oster
, “
On the mysterious propulsion of Synechococcus
,”
PloS One
7
,
e36081
(
2012
).
17.
S. L.
Tamm
, “
Ciliary motion in paramecium a scanning electron microscope study
,”
J. Cell Biol.
55
,
250
255
(
1972
).
18.
H.
Machemer
, “
Ciliary activity and the origin of metachrony in Paramecium: Effects of increased viscosity
,”
J. Exp. Biol.
57
,
239
259
(
1972
).
19.
B.
Nan
,
M. J.
McBride
,
J.
Chen
,
D. R.
Zusman
, and
G.
Oster
, “
Bacteria that glide with helical tracks
,”
Curr. Biol.
24
,
R169
R173
(
2014
).
20.
G.
Taylor
, “
Analysis of the swimming of microscopic organisms
,”
Proc. R. Soc. A
209
(
1099
),
447
461
(
1951
).
21.
M. J.
Lighthill
, “
On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers
,”
Commun. Pure Appl. Math.
5
,
109
118
(
1952
).
22.
J. R.
Blake
, “
A spherical envelope approach to ciliary propulsion
,”
J. Fluid Mech.
46
,
199
208
(
1971
).
23.
J.
Blake
, “
Model for micro-structure in ciliated organisms
,”
J. Fluid Mech.
55
,
1
23
(
1972
).
24.
C.
Brennen
, “
An oscillating-boundary-layer theory for ciliary propulsion
,”
J. Fluid Mech.
65
,
799
824
(
1974
).
25.
S.
Childress
,
Mechanics of Swimming and Flying
(
Cambridge University Press
,
1981
), Vol.
2
.
26.
T.
Ishikawa
,
M. P.
Simmonds
, and
T. J.
Pedley
, “
Hydrodynamic interaction of two swimming model micro-organisms
,”
J. Fluid Mech.
568
,
119
160
(
2006
).
27.
A.
Kanevsky
,
M. J.
Shelley
, and
A.-K.
Tornberg
, “
Modeling simple locomotors in Stokes flow
,”
J. Comput. Phys.
229
,
958
977
(
2010
).
28.
Y.
Or
and
R. M.
Murray
, “
Dynamics and stability of a class of low Reynolds number swimmers near a wall
,”
Phys. Rev. E
79
,
045302
(
2009
).
29.
D.
Crowdy
, “
Treadmilling swimmers near a no-slip wall at low Reynolds number
,”
Int. J. Nonlinear Mech.
46
,
577
585
(
2011
).
30.
S. E.
Spagnolie
and
E.
Lauga
, “
Hydrodynamics of self-propulsion near a boundary: Predictions and accuracy of far-field approximations
,”
J. Fluid Mech.
700
,
105
147
(
2012
).
31.
K.
Ishimoto
and
E. A.
Gaffney
, “
Squirmer dynamics near a boundary
,”
Phys. Rev. E
88
(
6
),
062702
(
2013
).
32.
O. S.
Pak
and
E.
Lauga
, “
Generalized squirming motion of a sphere
,”
J. Eng. Math.
88
,
1
28
(
2014
).
33.
Z.
Lin
,
J.-L.
Thiffeault
, and
S.
Childress
, “
Stirring by squirmers
,”
J. Fluid Mech.
669
,
167
177
(
2011
).
34.
S.
Wang
and
A. M.
Ardekani
, “
Unsteady swimming of small organisms
,”
J. Fluid Mech.
702
,
286
297
(
2012
).
35.
L.
Zhu
,
M.
Do-Quang
,
E.
Lauga
, and
L.
Brandt
, “
Locomotion by tangential deformation in a polymeric fluid
,”
Phys. Rev. E
83
,
011901
(
2011
).
36.
L.
Zhu
,
E.
Lauga
, and
L.
Brandt
, “
Self-propulsion in viscoelastic fluids: Pushers vs. pullers
,”
Phys. Fluids
24
,
051902
(
2012
).
37.
G. J.
Elfring
and
E.
Lauga
, “
Theory of locomotion through complex fluids
,” in
Complex Fluids in Biological Systems
(
Springer
,
2015
), pp.
283
317
.
38.
S.
Michelin
and
E.
Lauga
, “
Efficiency optimization and symmetry-breaking in a model of ciliary locomotion
,”
Phys. Fluids
22
,
111901
(
2010
).
39.
N.
Osterman
and
A.
Vilfan
, “
Finding the ciliary beating pattern with optimal efficiency
,”
Proc. Natl. Acad. Sci. U.S.A.
108
,
15727
15732
(
2011
).
40.
K.
Ishimoto
and
E. A.
Gaffney
, “
Swimming efficiency of spherical squirmers: Beyond the Lighthill theory
,”
Phys. Rev. E
90
(
1
),
012704
(
2014
).
41.
J.
Elgeti
and
G.
Gompper
, “
Emergence of metachronal waves in cilia arrays
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
4470
4475
(
2013
).
42.
L.
Zhu
,
E.
Lauga
, and
L.
Brandt
, “
Low-Reynolds-number swimming in a capillary tube
,”
J. Fluid Mech.
726
,
285
311
(
2013
).
43.
E.
Setter
,
I.
Bucher
, and
S.
Haber
, “
Low-Reynolds-number swimmer utilizing surface traveling waves: Analytical and experimental study
,”
Phys. Rev. E
85
,
066304
(
2012
).
44.
A. T.
Chwang
and
T. Y.
Wu
, “
Helical movement of micro-organisms
,”
Proc. R. Soc. B
178
,
327
346
(
1971
).
45.
J. J. L.
Higdon
, “
A hydrodynamic analysis of flagellar propulsion
,”
J. Fluid Mech.
90
,
685
711
(
1979
).
46.
B. U.
Felderhof
, “
Swimming at low Reynolds number of a cylindrical body in a circular tube
,”
Phys. Fluids
22
,
113604
(
2010
).
47.
J. J. L.
Higdon
, “
The hydrodynamics of flagellar propulsion: Helical waves
,”
J. Fluid Mech.
94
,
331
351
(
1979
).
48.
N.
Phan-Thien
,
T.
Tran-Cong
, and
M.
Ramia
, “
A boundary-element analysis of flagellar propulsion
,”
J. Fluid Mech.
184
,
533
549
(
1987
).
49.
B.
Liu
,
K. S.
Breuer
, and
T. R.
Powers
, “
Propulsion by a helical flagellum in a capillary tube
,”
Phys. Fluids
26
,
011701
(
2014
).
50.
H. C.
Fu
,
C. W.
Wolgemuth
, and
T. R.
Powers
, “
Swimming speeds of filaments in nonlinearly viscoelastic fluids
,”
Phys. Fluids
21
,
033102
(
2009
).
51.
S. E.
Spagnolie
,
B.
Liu
, and
T.
Powers
, “
Locomotion of helical bodies in viscoelastic fluids: Enhanced swimming at large helical amplitudes
,”
Phys. Rev. Lett.
111
,
068101
(
2013
).
52.
J.
Blake
, “
Mucus flows
,”
Math. Biosci.
17
,
301
313
(
1973
).
53.
S. M.
Ross
and
S.
Corrsin
, “
Results of an analytical model of mucociliary pumping
,”
J. Appl. Physiol.
37
,
333
340
(
1974
).
54.
G. R.
Fulford
and
J. R.
Blake
, “
Muco-ciliary transport in the lung
,”
J. Theor. Biol.
121
,
381
402
(
1986
).
55.
M. A.
Sleigh
,
J. R.
Blake
, and
N.
Liron
, “
The propulsion of mucus by cilia
,”
Am. Rev. Respir. Dis.
137
,
726
741
(
1988
).
56.
D. J.
Smith
,
E. A.
Gaffney
, and
J. R.
Blake
, “
Modelling mucociliary clearance
,”
Respir. Physiol. Neurobiol.
163
,
178
188
(
2008
).
57.
T. J.
Lardner
and
W. J.
Shack
, “
Cilia transport
,”
Bull. Math. Biophys.
34
,
325
335
(
1972
).
58.
J.
Blake
, “
Flow in tubules due to ciliary activity
,”
Bull. Math. Biol.
35
,
513
523
(
1973
).
59.
L.
Li
and
S. E.
Spagnolie
, “
Swimming and pumping of rigid helical bodies in viscous fluids
,”
Phys. Fluids
26
,
041901
(
2014
).
60.
H.
Power
and
G.
Miranda
, “
Second kind integral equation formulation of Stokes flows past a particle of arbitrary shape
,”
SIAM J. Appl. Math.
47
,
689
698
(
1987
).
61.
C.
Pozrikidis
,
Boundary Integral and Singularity Methods for Linearized Viscous Flow
(
Cambridge University Press
,
Cambridge, UK
,
1992
).
62.
S.
Kim
and
S. J.
Karrila
,
Microhydrodynamics: Principles and Selected Applications
(
Dover Publications, Inc.
,
Mineola, NY
,
1991
).
63.
K.
Atkinson
and
W.
Han
,
Theoretical Numerical Analysis
(
Springer
,
New York, NY
,
2009
).
64.
K. E.
Atkinson
,
An Introduction to Numerical Analysis
(
John Wiley & Sons
,
New York
,
1978
).
65.
B.
Liu
,
K. S.
Breuer
, and
T. R.
Powers
, “
Helical swimming in Stokes flow using a novel boundary-element method
,”
Phys. Fluids
25
,
061902
(
2013
).
66.
M.
Sauzade
,
G. J.
Elfring
, and
E.
Lauga
, “
Taylor’s swimming sheet: Analysis and imement of the perturbation series
,”
Phys. D
240
,
1567
1573
(
2011
).
67.
H.
Aref
, “
Stirring by chaotic advection
,”
J. Fluid Mech.
143
,
1
21
(
1984
).
68.
R. E.
Goldstein
,
I.
Tuval
, and
J.
van de Meent
, “
Microfluidics of cytoplasmic streaming and its implications for intracellular transport
,”
Proc. Natl. Acad. Sci. U.S.A.
105
,
3663
3667
(
2008
).
69.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids. Vol. 1: Fluid Mechanics
(
John Wiley and Sons Inc.
,
New York, NY
,
1987
).
70.
A.
Morozov
and
S. E.
Spagnolie
, “
Introduction to complex fluids
,” in
Complex Fluids in Biological Systems
(
Springer
,
2015
), pp.
3
52
.
71.
E.
Lauga
, “
Propulsion in a viscoelastic fluid
,”
Phys. Fluids
19
,
083104
(
2007
).
72.
H. C.
Fu
,
T. R.
Powers
, and
H. C.
Wolgemuth
, “
Theory of swimming filaments in viscoelastic media
,”
Phys. Rev. Lett.
99
,
258101
258105
(
2007
).
73.
B.
Liu
,
T. R.
Powers
, and
K. S.
Breuer
, “
Force-free swimming of a model helical flagellum in viscoelastic fluids
,”
Proc. Natl. Acad. Sci. U.S.A.
108
,
19516
19520
(
2011
).
74.
E.
Lauga
, “
Locomotion in complex fluids: Integral theorems
,”
Phys. Fluids
26
,
081902
(
2014
).
75.
G. J.
Elfring
,
O. S.
Pak
, and
E.
Lauga
, “
Two-dimensional flagellar synchronization in viscoelastic fluids
,”
J. Fluid Mech.
646
,
505
(
2010
).
76.
T.
Honda
,
K. I.
Arai
, and
K.
Ishiyama
, “
Micro swimming mechanisms propelled by external magnetic fields
,”
IEEE Trans. Magn.
32
,
5085
5087
(
1996
).
77.
A.
Ghosh
and
P.
Fischer
, “
Controlled propulsion of artificial magnetic nanostructured propellers
,”
Nano Lett.
9
,
2243
2245
(
2009
).
78.
L.
Zhang
,
J. J.
Abbott
,
L.
Dong
,
K. E.
Peyer
,
B. E.
Kratochvil
,
H.
Zhang
,
C.
Bergeles
, and
B. J.
Nelson
, “
Characterizing the swimming properties of artificial bacterial flagella
,”
Nano Lett.
9
,
3663
3667
(
2009
).
79.
S.
Tottori
,
L.
Zhang
,
F.
Qiu
,
K. K.
Krawczyk
,
A.
Franco-Obregón
, and
B. J.
Nelson
, “
Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport
,”
Adv. Mat.
24
,
811
816
(
2012
).
80.
S.
Tottori
,
L.
Zhang
,
K. E.
Peyer
, and
B. J.
Nelson
, “
Assembly, disassembly, and anomalous propulsion of microscopic helices
,”
Nano Lett.
13
,
4263
4268
(
2013
).
81.
K. E.
Peyer
,
S.
Tottori
,
F.
Qiu
,
L.
Zhang
, and
B. J.
Nelson
, “
Magnetic helical micromachines
,”
Chem. - Eur. J.
19
,
28
38
(
2013
).
82.
Y.
Tsukii
, Protist Information Server, 2005, url: http://protist.i.hosei.ac.jp/.
You do not currently have access to this content.