A numerical analysis of the interaction between decaying shear free turbulence and quiescent fluid is performed by means of global statistical budgets of enstrophy, both, at the single-point and two point levels. The single-point enstrophy budget allows us to recognize three physically relevant layers: a bulk turbulent region, an inhomogeneous turbulent layer, and an interfacial layer. Within these layers, enstrophy is produced, transferred, and finally destroyed while leading to a propagation of the turbulent front. These processes do not only depend on the position in the flow field but are also strongly scale dependent. In order to tackle this multi-dimensional behaviour of enstrophy in the space of scales and in physical space, we analyse the spectral enstrophy budget equation. The picture consists of an inviscid spatial cascade of enstrophy from large to small scales parallel to the interface moving towards the interface. At the interface, this phenomenon breaks, leaving place to an anisotropic cascade where large scale structures exhibit only a cascade process normal to the interface thus reducing their thickness while retaining their lengths parallel to the interface. The observed behaviour could be relevant for both the theoretical and the modelling approaches to flow with interacting turbulent/nonturbulent regions. The scale properties of the turbulent propagation mechanisms highlight that the inviscid turbulent transport is a large-scale phenomenon. On the contrary, the viscous diffusion, commonly associated with small scale mechanisms, highlights a much richer physics involving small lengths, normal to the interface, but at the same time large scales, parallel to the interface.

1.
C. B.
da Silva
,
J. C. R.
Hunt
,
I.
Eames
, and
J.
Westerweel
, “
Interfacial layers between regions of different turbulence intensity
,”
Annu. Rev. Fluid Mech.
46
,
567
590
(
2014
).
2.
A. L.
Corrsin
and
S.
Kistler
, “
The free-stream boundaries of turbulent flows
,” NACA TN-3133, TR-1244, 1955.
3.
M.
Holzner
,
A.
Liberzon
,
B.
Lüthi
,
A.
Tsinober
, and
W.
Kinzelbach
, “
The local entrainment velocity is a viscous quantity
,” in
Turbulence Heat and Mass Transfer 6 (THMT)
, edited by
K.
Hanjalić
,
Y.
Nagano
, and
S.
Jakirlić
(
Begell House, Inc.
,
Rome
,
2009
).
4.
J.
Westerweel
,
C.
Fukushima
,
J. M.
Pedersen
, and
J. C. R.
Hunt
, “
Momentum and scalar transport at the turbulent/non-turbulent interface of a jet
,”
J. Fluid Mech.
631
,
199
230
(
2009
).
5.
J.
Philip
,
C.
Meneveau
,
C. M.
de Silva
, and
I.
Marusic
, “
Multiscale analysis of fluxes at the turbulent/non-turbulent interface in high Reynolds number boundary layers
,”
Phys. Fluids
26
,
015105
(
2014
).
6.
M.
van Reeuwijk
and
M.
Holzner
, “
The turbulence boundary of a temporal jet
,”
J. Fluid Mech.
739
,
254
275
(
2014
).
7.
M.
Wolf
,
M.
Holzner
,
B.
Lüthi
,
D.
Krug
,
W.
Kinzelbach
, and
A.
Tsinober
, “
Effects of mean shear on the local turbulent entrainment process
,”
J. Fluid Mech.
731
,
95
116
(
2013
).
8.
B. R.
Morton
, “
Forced plumes
,”
J. Fluid Mech.
5
,
151
163
(
1959
).
9.
M.
Holzner
,
A.
Liberzon
,
N.
Niktin
,
B.
Lüthi
,
W.
Kinzelbach
, and
A.
Tsinober
, “
A Lagrangian investigation of the small-scale features of turbulent entrainment through particle tracking and direct numerical simulation
,”
J. Fluid Mech.
598
,
465
475
(
2008
).
10.
A.
Liberzon
,
M.
Holzner
,
B.
Lüthi
,
M.
Guala
, and
W.
Kinzelbach
, “
On turbulent entrainment and dissipation in dilute polymer solutions
,”
Phys. Fluids
21
,
035107
(
2009
).
11.
K. R.
Sreenivasan
,
R.
Ramshankar
, and
C.
Meneveau
, “
Mixing, entrainment and fractal dimensions of surfaces in turbulent flows
,”
Proc. R. Soc. A
421
,
79
108
(
1989
).
12.
R. R.
Taveira
and
C. B.
da Silva
, “
Kinetic energy budgets near the turbulent/nonturbulent interface in jets
,”
Phys. Fluids
25
,
015114
(
2013
).
13.
R. R.
Taveira
and
C. B.
da Silva
, “
Characteristics of the viscous superlayer in shear free turbulence and in planar turbulent jets
,”
Phys. Fluids
26
,
021702
(
2014
).
14.
M.
Wolf
,
B.
Lüthi
,
M.
Holzner
,
D.
Krug
,
W.
Kinzelbach
, and
A.
Tsinober
, “
Erratum: “Investigations on the local entrainment velocity in a turbulent jet” [Phys. Fluids 24, 105110 (2012)]
,”
Phys. Fluids
25
,
019901
(
2013
).
15.
J.
Mathew
and
A. J.
Basu
, “
Some characteristics of entrainment at a cylindrical turbulence boundary
,”
Phys. Fluids
14
,
2065
2072
(
2002
).
16.
S.
Veeravalli
and
Z.
Warhaft
, “
The shearless turbulence mixing layer
,”
J. Fluid Mech.
207
,
191
229
(
1989
).
17.
S.
Veeravalli
and
Z.
Warhaft
, “
Thermal dispersion from a line source in the shearless turbulence mixing layer
,”
J. Fluid Mech.
216
,
35
70
(
1990
).
18.
D.
Tordella
,
M.
Iovieno
, and
P. R.
Bailey
, “
Sufficient condition for Gaussian departure in turbulence
,”
Phys. Rev. E
77
,
016309
(
2008
).
19.
D.
Tordella
and
M.
Iovieno
, “
Small-scale anisotropy in turbulent shearless mixing
,”
Phys. Rev. Lett.
107
,
194501
(
2011
).
20.
E.
De Angelis
,
C. M.
Casciola
,
R.
Benzi
, and
R.
Piva
, “
Homogeneous isotropic turbulence in dilute polymers
,”
J. Fluid Mech.
531
,
1
10
(
2005
).
21.
D.
Tordella
and
M.
Iovieno
, “
Numerical experiments on the intermediate asymptotics of shear-free turbulent transport and diffusion
,”
J. Fluid Mech.
549
,
429
441
(
2006
).
22.
R. R.
Taveira
,
J. S.
Diogo
,
D. C.
Lopes
, and
C. B.
da Silva
, “
Lagrangian statistics across the turbulent-nonturbulent interface in a turbulent plane jet
,”
Phys. Rev. E
88
,
043001
(
2013
).
23.
M.
Gampert
,
J.
Boschung
,
F.
Hennig
,
M.
Gauding
, and
N.
Peters
, “
The vorticity versus the scalar criterion for the detection of the turbulent /non-turbulent interface
,”
J. Fluid Mech.
750
,
578
596
(
2014
).
24.
A.
Cimarelli
,
E.
De Angelis
, and
C. M.
Casciola
, “
Paths of energy in turbulent channel flows
,”
J. Fluid Mech.
715
,
436
451
(
2013
).
25.
A.
Cimarelli
and
E.
De Angelis
, “
The physics of energy transfer toward improved subgrid-scale models
,”
Phys. Fluids
26
,
055103
(
2014
).
You do not currently have access to this content.