We present an experimental visualization study of centrifugal spinning, which is a novel method of producing nanofibers. The investigation was conducted using Newtonian and viscoelastic fluids to study the effect of viscoelasticity, driving force, and the flow rate on the initial thinning behavior, jet contour shapes, and radii. Boger fluids based on Newtonian polybutene and viscoelastic polyisobutylene were utilized as test fluids in the current study. Our results reveal that increasing the viscoelasticity leads to a faster initial thinning of the polymer jet. However, the effect is strongly coupled with the rotation speed, and due to a faster increase in extensional viscosity for highly viscoelastic fluids, the thinning slows down with the increase in the angular velocity. Initial thinning is shown to be faster for the lower flow rates. Viscoelasticity and centrifugal force have a significant influence on the jet contour radii. The maximum radius will decrease for more viscoelastic fluids, and with the increase in angular velocity due to the development of the elastic hoop stress. The comparison of experiments with the discretized element modeling with the FENE-P model confirms the model predictive potential for the thinning behavior. Finally, the centrifugal spinning experiments are compared to electrospinning in order to observe a qualitative similarity.

1.
A.
Ziabicki
,
Fundamentals of Fibre Formation: The Science of Fibre Spinning and Drawing
(
Wiley
,
New York
,
1976
).
2.
E.
Zhmayev
,
D.
Cho
, and
Y. L.
Joo
, “
Nanofibers from gas-assisted polymer melt spinning
,”
Polymer
51
,
4140
(
2010
).
3.
A.
Formhals
, “
Process and apparatus for preparing artificial threads
,” U.S. patent 1,975,504 (2 October
1934
).
4.
A. E.
Spivak
,
Y. A. I.
Dzenis
, and
D. H.
Reneker
, “
A model of steady jet in the electrospinning process
,”
Mech. Res. Commun.
27
,
37
(
2000
).
5.
M. M.
Hohman
,
M.
Shin
,
G.
Rutledge
, and
M. P.
Brenner
, “
Electrospinning and electrically forced jets. I. Stability theory
,”
Phys. Fluids
13
,
2201
(
2001
).
6.
M. M.
Hohman
,
M.
Shin
,
G.
Rutledge
, and
M. P.
Brenner
, “
Electrospinning and electrically forced jets. II. Applications
,”
Phys. Fluids
13
,
2221
(
2001
).
7.
J. J.
Feng
, “
The stretching of an electrified non-Newtonian jet: A model for electrospinning
,”
Phys. Fluids
14
,
3912
(
2002
).
8.
S.
Padron
,
A.
Fuentes
,
D.
Caruntu
, and
K.
Lozano
, “
Experimental study of nanofiber production through forcespinning
,”
J. Appl. Phys.
113
,
024318
(
2013
).
9.
D.
Edmondson
,
A.
Cooper
,
S.
Jana
,
D.
Wood
, and
M.
Zhang
, “
Centrifugal electrospinning of highly-aligned polymer nanofibers over large area
,”
J. Mater. Chem.
22
,
18646
(
2012
).
10.
M. R.
Badrossamay
,
H. A.
McIlwee
,
J. A.
Goss
, and
K. K.
Parker
, “
Nanofiber assembly by rotary jet-spinning
,”
Nano Lett.
10
,
2257
(
2010
).
11.
A.
Arinstein
,
M.
Burman
,
O.
Gendelman
, and
E.
Zussman
, “
Effect of supramolecular structure on polymer nanofibre elasticity
,”
Nat. Nanotechnol.
2
,
59
(
2007
).
12.
S.
Mitragotri
and
J.
Lahann
, “
Physical approaches to biomaterial design
,”
Nat. Mater.
8
,
15
(
2009
).
13.
V.
Thavasi
,
G.
Singh
, and
S.
Ramakrishna
, “
Electrospun nanofibers in energy and environmental applications
,”
Energy Environ. Sci.
1
,
205
(
2008
).
14.
J.
Yu
,
R.
Feng
, and
W.
She
, “
Low-power all-optical switch based on the bend effect of a nm fiber taper driven by outgoing light
,”
Opt. Express
17
,
4640
(
2009
).
15.
Y. M.
Shin
,
M. M.
Hohman
,
M. P.
Brenner
, and
G. C.
Rutledge
, “
Experimental characterization of electrospinning: The electrically forced jet and instabilities
,”
Polymer
42
,
09955
(
2001
).
16.
C. P.
Carroll
and
Y. L.
Joo
, “
Electrospinning of viscoelastic Boger fluids: Modeling and experiments
,”
Phys. Fluids
18
,
053102
(
2006
).
17.
D. H.
Reneker
,
A. L.
Yarin
,
H.
Fong
, and
S.
Koombhongse
, “
Bending instability of electrically charged liquid jets of polymer solutions in electrospinning
,”
J. Appl. Phys.
87
,
4531
(
2000
).
18.
A. L.
Yarin
,
S.
Koombhongse
, and
D. H.
Reneker
, “
Bending instability in electrospinning of nanofibers
,”
J. Appl. Phys.
89
,
3018
(
2001
).
19.
E.
Zhmayev
,
D.
Cho
, and
Y. L.
Joo
, “
Nanofibers from gas-assisted polymer melt electrospinning
,”
Polymer
51
,
274
(
2010
).
20.
E.
Zhmayev
,
D.
Cho
, and
Y. L.
Joo
, “
Electrohydrodynamic quenching in polymer melt electrospinning
,”
Phys. Fluids
23
,
073102
(
2011
).
21.
C. P.
Carroll
and
Y. L.
Joo
, “
Axisymmetric instabilities of electrically driven viscoelastic jets
,”
J. Non-Newtonian Fluid Mech.
153
,
130
(
2008
).
22.
C. P.
Carroll
and
Y. L.
Joo
, “
Discretized modelling of electrically driven viscoelastic jets in the initial stage of electrospinning
,”
J. Appl. Phys.
109
,
094315
(
2011
).
23.
Y. L.
Joo
and
E. S. G.
Shaqfeh
, “
Observations of purely elastic instabilities in the Taylor-Dean flow of Boger fluid
,”
J. Fluid Mech.
262
,
27
(
1994
).
24.
G.
Prilutski
,
R. K.
Gupta
,
T.
Sridhar
, and
M. E.
Ryan
, “
Model viscoelastic liquids
,”
J. Non-Newtonian Fluid Mech.
12
,
233
(
1983
).
25.
D. F.
James
, “
Boger fluids
,”
Annu. Rev. Fluid Mech.
41
,
129
(
2009
).
26.
M. E.
Mackay
and
D. V.
Boger
, “
An explanation of the rheological properties of Boger fluids
,”
J. Non-Newtonian Fluid Mech.
22
,
235
(
1987
).
27.
M. R. J.
Verhoef
,
B. H. A. A.
van den Brule
, and
M. A.
Hulsen
, “
On the modelling of a PIB/PB Boger fluid in extensional flow
,”
J. Non-Newtonian Fluid Mech.
80
,
155
(
1999
).
28.
E.
Zhmayev
,
H.
Zhou
, and
Y. L.
Joo
, “
Modeling of non-isothermal polymer jets in melt electrospinning
,”
J. Non-Newtonian Fluid Mech.
153
,
95
(
2008
).
29.
I. M.
Wallwork
,
S. P.
Decent
,
A. C.
King
, and
R. M. S. M.
Schulkes
, “
The trajectory and stability of a spiralling liquid jet. Part 1. Inviscid theory
,”
J. Fluid Mech.
459
,
43
(
2002
).
30.
J.
Uddin
,
S. P.
Decent
, and
M. J. H.
Simmons
, “
Non-linear waves along a rotating non-Newtonian liquid jet
,”
Int. J. Eng. Sci.
46
,
1253
(
2008
).
31.
S. P.
Decent
,
A. C.
King
,
M. J. H.
Simmons
,
E. I.
Părău
,
I. M.
Wallwork
,
C. J.
Gurney
, and
J.
Uddin
, “
The trajectory and stability of a spiralling liquid jet: Viscous theory
,”
Appl. Math. Modell.
33
,
4283
(
2009
).
32.
S.
Panda
,
N.
Marheineke
, and
R.
Wegener
, “
Systematic derivations of an asymptotic model for the dynamics of curved viscous fibers
,”
Math. Methods Appl. Sci.
31
,
1153
(
2008
).
33.
N.
Marheineke
and
R.
Wegener
, “
Asymptotic model for the dynamics of curved viscous fibers with surface tension
,”
J. Fluid Mech.
622
,
345
(
2009
).
34.
T.
Goetz
,
A.
Klar
, and
A.
Unterreiter
, “
Numerical evidence for the non-existence of solutions to the equations describing rotational fiber spinning
,”
Math. Models Methods Appl. Sci.
18
,
1829
(
2008
).
You do not currently have access to this content.