Inertia-gravity wave radiation from the merging of two co-rotating vortices is investigated numerically in a rotating shallow water system in order to focus on cyclone–anticyclone asymmetry at different values of the Rossby number (Ro). A numerical study is conducted on a model using a spectral method in an unbounded domain to estimate the gravity wave flux with high accuracy. Continuous gravity wave radiation is observed in three stages of vortical flows: co-rotating of the vortices, merging of the vortices, and unsteady motion of the merged vortex. A cyclone–anticyclone asymmetry appears at all stages at smaller Ro (≤20). Gravity waves from anticyclones are always larger than those from cyclones and have a local maximum at smaller Ro (∼2) compared with that for an idealized case of a co-rotating vortex pair with a constant rotation rate. The source originating in the Coriolis acceleration has a key role in cyclone–anticyclone asymmetry in gravity waves. An additional important factor is that at later stages, the merged axisymmetric anticyclone rotates faster than the elliptical cyclone due to the effect of the Rossby deformation radius, since a rotation rate higher than the inertial cutoff frequency is required to radiate gravity waves.

1.
D. C.
Fritts
and
M. J.
Alexander
, “
Gravity wave dynamics and effects in the middle atmosphere
,”
Rev. Geophys.
41
,
1003
, doi:10.1029/2001RG000106 (
2003
).
2.
R.
Ford
,
M. E.
McIntyre
, and
W. A.
Norton
, “
Balance and the slow quasimanifold: Some explicit results
,”
J. Atmos. Sci.
57
,
1236
1254
(
2000
).
3.
J.
Vanneste
, “
Balance and spontanous wave generation in geophysical flows
,”
Annu. Rev. Fluid. Mech.
45
,
147
172
(
2013
).
4.
R.
Plougonven
and
F.
Zhang
, “
Internal gravity waves from atmospheric jets and fronts
,”
Rev. Geophys.
52
,
33
76
, doi:10.1002/2012RG000419 (
2014
).
5.
R.
Ford
, “
Gravity wave radiation from vortex trains in rotating shallow water
,”
J. Fluid Mech.
281
,
81
118
(
1994
).
6.
M. E.
McIntyre
, “
Spontaneous imbalance and hybrid vortex-gravity structures
,”
J. Atmos. Sci.
66
,
1315
1325
(
2009
).
7.
N.
Sugimoto
,
K.
Ishioka
, and
S.
Yoden
, “
Gravity wave radiation from unsteady rotational flow in an f-plane shallow water system
,”
Fluid Dyn. Res.
39
,
731
754
(
2007
).
8.
N.
Sugimoto
,
K.
Ishioka
, and
K.
Ishii
, “
Parameter sweep experiments on spontaneous gravity wave radiation from unsteady rotational flow in an f-plane shallow water system
,”
J. Atmos. Sci.
65
,
235
249
(
2008
).
9.
N.
Sugimoto
and
K.
Ishii
, “
Spontaneous gravity wave radiation in a shallow water system on a rotating sphere
,”
J. Meteorol. Soc. Jpn.
90
,
101
125
(
2012
).
10.
N.
Sugimoto
,
K.
Ishioka
,
H.
Kobayashi
, and
Y.
Shimomura
, “
Cyclone-anticyclone asymmetry in gravity wave radiation from a co-rotating vortex pair in rotating shallow water
,”
J. Fluid Mech.
772
,
80
106
(
2015
).
11.
M. V.
Melander
,
N. J.
Zabusky
, and
J. C.
McWilliams
, “
Symmetric vortex merger in two dimensions: Causes and conditions
,”
J. Fluid Mech.
195
,
303
340
(
1988
).
12.
D. G.
Dritshel
, “
A general theory for two-dimensional vortex interactions
,”
J. Fluid Mech.
293
,
269
303
(
1995
).
13.
P.
Meunier
,
U.
Ehrenstein
,
T.
Leweke
, and
M.
Rossi
, “
A merging criterion for two-dimensional co-rotating vortices
,”
Phys. Fluids
14
,
2757
2766
(
2002
).
14.
B. E.
Mitchell
,
S. K.
Lele
, and
P.
Moin
, “
Direct computation of the sound from a compressible co-rotating vortex pair
,”
J. Fluid Mech.
285
,
181
202
(
1995
).
15.
K.
Ishioka
, in
IUTAM Symposium on Computational Physics and New Perspectives in Turbulence, Nagoya, Japan, 11-14 September 2006
, edited by
Y.
Kaneda
(
Springer
,
2008
), pp.
291
296
.
16.
D. G.
Dritschel
and
J.
Vanneste
, “
Instability of a shallow-water potential-vorticity front
,”
J. Fluid Mech.
561
,
237
254
(
2006
).
17.
V.
Zeitlin
, “
Decoupling of balanced and unbalanced motions and inertia–gravity wave emission: Small versus large Rossby numbers
,”
J. Atmos. Sci.
65
,
3528
3542
(
2008
).
18.
M. J.
Lighthill
, “
On the sound generated aerodynamically. I. General theory
,”
Proc. R. Soc. A
211
,
564
587
(
1952
).
19.
B.
Cushman-Roisin
and
B.
Tang
, “
Geostrophic turbulence and emergence of eddies beyond the radius of deformation
,”
J. Phys. Oceanogr.
20
,
97
113
(
1990
).
20.
N.
Lahaye
and
V.
Zeitlin
, “
Decaying vortex and wave turbulence in rotating shallow water model, as follows from high-resolution direct numerical simulations
,”
Phys. Fluids
24
,
115106
(
2012
).
You do not currently have access to this content.