Large-eddy simulations have been conducted to investigate the mechanisms of separated-flow control using a dielectric barrier discharge plasma actuator at a low Reynolds number. In the present study, the mechanisms are classified according to the means of momentum injection to the boundary layer. The separated flow around the NACA 0015 airfoil at a Reynolds number of 63 000 is used as the base flow for separation control. Both normal and burst mode actuations are adopted in separation control. The burst frequency non-dimensionalized by the freestream velocity and the chord length (F+) is varied from 0.25 to 25, and we discuss the control mechanism through the comparison of the aerodynamic performance and controlled flow-fields in each normal and burst case. Lift and drag coefficients are significantly improved for the cases of F+ = 1, 5, and 15 due to flow reattachment associated with a laminar-separation bubble. Frequency and linear stability analyses indicate that the F+ = 5 and 15 cases effectively excite the natural unstable frequency at the separated shear layer, which is caused by the Kelvin-Helmholtz instability. This excitation results in earlier flow reattachment due to earlier turbulent transition. Furthermore, the Reynolds stress decomposition is conducted in order to identify the means of momentum entrainment resulted from large-scale spanwise vortical structure or small-scale turbulent vortices. For the cases with flow reattachment, the large-scale spanwise vortices, which shed from the separated shear layer through plasma actuation, significantly increase the periodic component of the Reynolds stress near the leading edge. These large-scale vortices collapse to small-scale turbulent vortices, and the turbulent component of the Reynolds stress increases around the large-scale vortices. In these cases, although the combination of momentum entrainment by both Reynolds stress components results in flow reattachment, the dominant component is identified as the turbulent component. This indicates that one of the effective control mechanisms for laminar separation is momentum entrainment by turbulent vortices through turbulent transition.

1.
D.
Greenblatt
and
I. J.
Wygnanski
, “
The control of flow separation by periodic excitation
,”
Prog. Aerosp. Sci.
36
,
487
545
(
2000
).
2.
A.
Glezer
and
M.
Amitay
, “
Synthetic jets
,”
Annu. Rev. Fluid Mech.
34
,
503
529
(
2002
).
3.
T. C.
Corke
,
C. L.
Enloe
, and
S. P.
Wilkinson
, “
Dielectric barrier discharge plasma actuators for flow control
,”
Annu. Rev. Fluid Mech.
42
,
505
529
(
2010
).
4.
J.-J.
Wang
,
K.-S.
Choi
,
L.-H.
Feng
,
T. N.
Jukes
, and
R. D.
Whalley
, “
Recent developments in dbd plasma flow control
,”
Prog. Aerosp. Sci.
62
,
52
78
(
2013
).
5.
C. L.
Enloe
,
T. E.
McLaughlin
,
R. D.
Van Dyken
,
K. D.
Kachner
,
E. J.
Jumper
, and
T. C.
Corke
, “
Mechanisms and responses of a single dielectric barrier plasma actuator: Plasma morphology
,”
AIAA J.
42
,
589
594
(
2004
).
6.
C. L.
Enloe
,
T. E.
McLaughlin
,
G. I.
Font
, and
J. W.
Baughn
, “
Parameterization of temporal structure in the single-dielectric-barrier aerodynamic plasma actuator
,”
AIAA J.
44
,
1127
1136
(
2006
).
7.
T.
Abe
,
Y.
Takizawa
,
S.
Sato
, and
N.
Kimura
, “
Experimental study for momentum transfer in a dielectric barrier discharge plasma actuator
,”
AIAA J.
46
,
2248
2256
(
2008
).
8.
G. I.
Font
,
C. L.
Enloe
, and
T. E.
McLaughlin
, “
Plasma volumetric effects on the force production of a plasma actuator
,”
AIAA J.
48
,
1869
1874
(
2010
).
9.
M. L.
Post
and
T. C.
Corke
, “
Separation control on high angle of attack airfoil using plasma actuators
,”
AIAA J.
42
,
2177
2184
(
2004
).
10.
N.
Bénard
,
J.
Jolibois
, and
E.
Moreau
, “
Lift and drag performances of an axisymmetric airfoil controlled by plasma actuator
,”
J. Electrost.
67
,
133
139
(
2009
).
11.
J. H.
Mabe
,
F. T.
Calkins
,
B.
Wesley
,
R.
Woszidlo
,
L.
Taubert
, and
I.
Wygnanski
, “
Single dielectric barrier discharge plasma actuators for improved airfoil performance
,”
J. Aircr.
46
,
847
855
(
2009
).
12.
A. N.
Vorobiev
,
R. M.
Rennie
,
E. J.
Jumper
, and
T. E.
McLaughlin
, “
Experimental investigation of lift enhancement and roll control using plasma actuators
,”
J. Aircr.
45
,
1315
1321
(
2008
).
13.
A. N.
Vorobiev
,
R. M.
Rennie
, and
E. J.
Jumper
, “
Lift enhancement by plasma actuators at low reynolds numbers
,”
J. Aircr.
50
,
12
19
(
2013
).
14.
K.
Asada
,
T.
Nonomura
,
H.
Aono
,
M.
Sato
,
K.
Okada
, and
K.
Fujii
, “
Les of transient flows controlled by dbd plasma actuator over a stalled airfoil
,”
Int. J. Comput. Fluid Dyn.
29
,
215
229
(
2015
).
15.
D.
Greenblatt
,
B.
Goksel
,
I.
Rechenberg
,
C. Y.
Schule
,
D.
Romann
, and
C. O.
Paschereit
, “
Dielectric barrier discharge flow control at very low flight reynolds numbers
,”
AIAA J.
46
,
1528
1541
(
2008
).
16.
D.
Greenblatt
,
T.
Schneider
, and
C. Y.
Schule
, “
Mechanism of flow separation control using plasma actuation
,”
Phys. Fluids
24
,
077102
(
2012
).
17.
D. P.
Rizzetta
and
M. R.
Visbal
, “
Exploration of plasma-based control for low-reynolds number airfoil/gust interaction
,”
Int. J. Comput. Fluid Dyn.
25
,
509
533
(
2011
).
18.
D. P.
Rizzetta
and
M. R.
Visbal
, “
Numerical investigation of plasma-based control for low-Reynolds-number airfoil flows
,”
AIAA J.
49
,
411
425
(
2011
).
19.
J.
Huang
,
T. C.
Corke
, and
F. O.
Thomas
, “
Unsteady plasma actuators for separation control of low-pressure turbin blades
,”
AIAA J.
44
,
1477
1487
(
2006
).
20.
J.
Huang
,
T. C.
Corke
, and
F. O.
Thomas
, “
Plasma actuators for separation control of low-pressure turbine blades
,”
AIAA J.
44
,
51
57
(
2006
).
21.
D. K.
Van Ness
II
,
T. C.
Corke
, and
S. C.
Morris
, “
Plasma actuator blade tip clearance flow control in a linear turbine cascade
,”
J. Propul. Power
28
,
504
516
(
2012
).
22.
D.
Greenblatt
,
A.
Ben-Harav
, and
H.
Mueller-Vahl
, “
Dynamic stall control on a vertical-axis wind turbine using plasma actuators
,”
AIAA J.
52
,
456
462
(
2014
).
23.
A.
Yakeno
,
S.
Kawai
,
T.
Nonomura
, and
K.
Fujii
, “
Separation control based on turbulence transition around a two-dimensional hump at different reynolds numbers
,”
Int. J. Heat Fluid Flow
55
,
52
64
(
2015
).
24.
A. A.
Sidorenko
,
B. Y.
Zanin
,
B. V.
Postnikov
,
A. D.
Budovsky
,
A. Y.
Starikovskii
,
D. V.
Roupassov
,
I. N.
Zavialov
,
N. D.
Malmuth
,
P.
Smereczniak
, and
J. S.
Silkey
, “Pulsed discharge actuators for rectangular wings separation control,” AIAA-2007-941, 2007.
25.
M. P.
Patel
,
T. T.
Ng
,
S.
Vasudevan
,
T. C.
Corke
,
M. L.
Post
,
T. E.
McLaughlin
, and
C. F.
Suchomel
, “
Scaling effects of an aerodynamic plasma actuator
,”
J. Aircr.
45
,
223
236
(
2008
).
26.
Y.-H.
Li
,
Y.
Wu
,
M.
Zhou
,
C.-B.
Su
,
X.-W.
Zhang
, and
J.-Q.
Zhu
, “
Control of the corner separation in a compressor cascade by steady and unsteady plasma aerodynamic actuation
,”
Exp. Fluids
48
,
1015
1023
(
2010
).
27.
R.
Sosa
,
G.
Artana
,
N.
Benard
, and
E.
Moreau
, “
Mean lift generation on cylinders induced with plasma actuators
,”
Exp. Fluids
51
,
853
860
(
2011
).
28.
N.
Bénard
and
E.
Moreau
, “
On the vortex dynamic of airflow reattachment forced by a single non-thermal plasma discharge actuator
,”
Flow, Turbul. Combust.
87
,
1
31
(
2011
).
29.
T. N.
Jukes
and
K.-S.
Choi
, “
Control of unsteady flow separation over a circular cylinder using dielectric-barrier-discharge surface plasma
,”
Phys. Fluids
21
,
094106
(
2009
).
30.
N.
Bénard
and
E.
Moreau
, “
Response of a circular cylinder wake to a symmetric actuation by non-thermal plasma discharges
,”
Exp. Fluids
54
,
1467
(
2013
).
31.
K.
Asada
and
K.
Fujii
, “Computational analysis of unsteady flow-field induced by plasma actuator in burst mode,” AIAA-2010-5090, 2010.
32.
T.
Nonomura
,
H.
Aono
,
M.
Sato
,
A.
Yakeno
,
K.
Okada
,
Y.
Abe
, and
K.
Fujii
, “Control mechanism of plasma actuator for separated flow around naca0015 at Reynolds number 63 000 -separation bubble related mechanisms,” AIAA 2013-0853, 2013.
33.
M. E.
Goldstein
, “
The evolution of tollmien-schlichting waves near a leading edge
,”
J. Fluid Mech.
127
,
59
81
(
1983
).
34.
M. E.
Goldstein
,
P. M.
Sockol
, and
J.
Sanz
, “
The evolution of tollmien-schlichting waves near a leading edge part 2. Numerical determination of amplitudes
,”
J. Fluid Mech.
129
,
443
453
(
1983
).
35.
C.-M.
Ho
and
P.
Huerre
, “
Perturbed free shear layers
,”
Annu. Rev. Fluid Mech.
16
,
365
424
(
1984
).
36.
R. G.
Jacobs
and
P. A.
Durbin
, “
Simulations of bypass transition
,”
J. Fluid Mech.
428
,
185
212
(
2001
).
37.
K.
Asada
,
Y.
Ninomiya
,
A.
Oyama
, and
K.
Fujii
, “Airfoil flow experiment on the duty cycle of dbd plasma actuator,” AIAA-2009-531, 2009.
38.
K.
Asada
, “
Computational analysis of the flow fields induced by a DBD plasma actuator toward separated-flow control
,” Ph.D. thesis, The University of Tokyo, 2014.
39.
Y. B.
Suzen
and
P. G.
Huang
, “Simulations of flow separation contorl using plasma actuator,” AIAA-2006-877, 2006.
40.
H.
Aono
,
S.
Sekimoto
,
M.
Sato
,
A.
Yakeno
,
T.
Nonomura
, and
K.
Fujii
, “
Computational and experimental analysis of flow structures induced by a plasma actuator with burst modulations in quiescent air
,”
Mech. Eng. J.
2
,
15
00233
(
2015
).
41.
M.
Sato
,
H.
Aono
,
A.
Yakeno
,
T.
Nonomnura
,
K.
Fujii
,
K.
Okada
, and
K.
Asada
, “
Multifactorial effects of operating conditions of dielectric-barrier- discharge plasma actuator on laminar-separated-flow control
,”
AIAA J.
53
,
2544
2559
(
2015
).
42.
H.
Nishida
,
T.
Nonomura
, and
T.
Abe
, “
Three-dimensional simulations of discharge plasma evolution on a dielectric barrier discharge plasma actuator
,”
J. Appl. Phys.
115
,
133301
(
2014
).
43.
S.
Sekimoto
, “
Flow control mechanism of a DBD plasma actuator for airfoils in low speed free-stream
,” Ph.D. thesis, The University of Tokyo, 2015.
44.
E.
Moreau
, “
Airflow control by non-thermal plasma actuators
,”
J. Phys. D: Appl. Phys.
40
,
605
636
(
2007
).
45.
K.
Fujii
,
H.
Endo
, and
M.
Yasuhara
, “
Activities of computational fluid dynamics in Japan: Compressible flow simulations
,” in
High Performance Computing Research and Practice in Japan
(
Wiley Professional Computing
,
1990
), pp.
139
161
.
46.
H.
Aono
,
T.
Nonomura
,
N.
Iizuka
,
T.
Ohsako
,
T.
Inari
,
Y.
Hashimoto
,
R.
Takaki
, and
K.
Fujii
, “
Scalar tuning of a fluid solver using compact scheme for a supercomputer with a distributed memory architecture
,”
CFD Lett.
5
,
143
152
(
2013
).
47.
S. K.
Lele
, “
Compact finite difference schemes with spectral-like resolution
,”
J. Comput. Phys.
103
,
16
42
(
1992
).
48.
D. V.
Gaitonde
and
M. R.
Visbal
, “
Padé-type higher-order boundary filters for the Navier-Stokes equations
,”
AIAA J.
38
,
2103
2112
(
2000
).
49.
H.
Nishida
and
T.
Nonomura
, “
Adi-SGS scheme on ideal magnetohydrodynamics
,”
J. Comput. Phys.
228
,
3182
3188
(
2009
).
50.
M. R.
Visbal
and
D. P.
Rizzetta
, “
Large-eddy simulation on curviliner grids using compact difference and filtering schemes
,”
J. Fluids Eng. Trans. ASME
124
,
836
847
(
2002
).
51.
S.
Teramoto
, “
Large-eddy simulation of transitional boundary layer with impinging shock wave
,”
AIAA J.
43
,
2354
2363
(
2005
).
52.
H.
Choi
and
P.
Moin
, “
Effects of the computational time step on numerical solutions of turbulent flow
,”
J. Comput. Phys.
113
,
1
4
(
1994
).
53.
K.
Fujii
, “
Unified zonal method based on the fortified solution algorithm
,”
J. Comput. Phys.
118
,
92
108
(
1995
).
54.
A. V.
Dovgal
,
V.
Kozlov
, and
A.
Michalke
, “
Laminar boundary layer separation: Instability and associated phenomena
,”
Prog. Aerosp. Sci.
30
,
61
94
(
1994
).
55.
O.
Marxen
,
M.
Lang
, and
U.
Rist
, “
Vortex formation and vortex breakup in a laminar separation bubble
,”
J. Fluid Mech.
728
,
58
90
(
2013
).
56.
T.
Nonomura
,
M.
Sato
,
K.
Okada
,
H.
Aono
,
A.
Yakeno
, and
K.
Fujii
, “
Visualization of momentum added/induced by a plasma actuator controlling separated flow over an airfoil
,” in
16th International Symposium on Flow Visualization, ISFV16-1148
(
Visualization Society of Japan
,
2014
).
57.
H.
Sato
and
H.
Saito
, “
Fine-structure of energy spectra of velocity fluctuations in the transition region of a two-dimensional wake
,”
J. Fluid Mech.
67
(
3
),
539
559
(
1975
).
58.
C.
Bogey
,
O.
Marsden
, and
C.
Bailly
, “
Effects of moderate reynolds numbers on subsonic round jets with highly disturbed nozzle-exit boundary layers
,”
Phys. Fluids
24
,
105107
(
2012
).
59.
A.
Michalke
, “
The instability of free shear layers
,”
Prog. Aerosp. Sci.
12
,
213
239
(
1972
).
60.
L.
Bernal
and
A.
Roshko
, “
Streamwise vortex structure in plane mixing layer
,”
J. Fluid Mech.
170
,
499
525
(
1986
).
61.
C.-M.
Ho
and
L.-S.
Huang
, “
Subharmonics and vortex merging in mixing layers
,”
J. Fluid Mech.
119
,
443
473
(
1982
).
62.
M. S. H.
Boutilier
and
S.
Yarusevych
, “
Separated shear layer transition over an airfoil at a low reynolds number
,”
Phys. Fluids
24
,
084105
(
2012
).
63.
M.
Nishioka
,
M.
Asai
, and
S.
Yoshida
, “
Control of flow separation by acoustic excitation
,”
AIAA J.
28
,
1909
1915
(
1990
).
64.
O.
Marxen
and
D. S.
Henningson
, “
The effect of small-amplitude convective disturbances on the size and bursting of a laminar separation bubble
,”
J. Fluid Mech.
671
,
1
33
(
2011
).
65.
A. K. M. F.
Hussain
and
W. C.
Reynolds
, “
The mechanics of an organized wave in turbulent shear flow. Part 2. Experimental results
,”
J. Fluid Mech.
54
,
241
261
(
1972
).
66.
W. C.
Reynolds
and
A. K. M. F.
Hussain
, “
The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments
,”
J. Fluid Mech.
54
,
263
288
(
1972
).
67.
B.
Cantwell
and
D.
Coles
, “
An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder
,”
J. Fluid Mech.
136
,
321
374
(
1983
).
68.
S.
Balachandar
,
R.
Mittal
, and
F.
Najjar
, “
Properties of the mean recirculation region in the wakes of two-dimensional bluff bodies
,”
J. Fluid Mech.
351
,
167
199
(
1997
).
69.
R.
Perrin
,
M.
Braza
,
E.
Cid
,
S.
Cazin
,
A.
Barthet
,
A.
Sevrain
,
C.
Mockett
, and
F.
Thiele
, “
Obtaining phase averaged turbulence properties in the near wake of a circular cylinder at high reynolds number using pod
,”
Exp. Fluids
43
,
341
355
(
2007
).
70.
J. H.
Watmuff
, “
Evolution of a wave packet into vortex loops in a laminar separation bubble
,”
J. Fluid Mech.
397
,
119
169
(
1999
).
71.
A. K. M. F.
Hussain
and
K. B. M. Q.
Zaman
, “
Vortex pairing in a circular jet under controlled excitation. Part 2. Coherent structure dynamics
,”
J. Fluid Mech.
101
,
493
544
(
1980
).
72.
D.
Greenblatt
,
K. B.
Paschal
,
C.-S.
Yao
, and
J.
Harris
, “
Experimental investigation of separation control part 2: Zero mass-flux oscillatory blowing
,”
AIAA J.
44
,
2831
2845
(
2006
).
73.
W.
Kim
,
J.-Y.
Yoo
, and
J.
Sung
, “
Dynamics of vortex lock-on in a perturbed cylinder wake
,”
Phys. Fluids
18
,
074103
(
2006
).
74.
L. H.
Feng
and
J. J.
Wang
, “
Circular cylinder vortex-synchronization control with a synthetic jet positioned at the rear stagnation point
,”
J. Fluid Mech.
662
,
232
259
(
2010
).
75.
S.
Yoshioka
,
S.
Obi
, and
S.
Masuda
, “
Organized vortex motion in periodically perturbed turbulent separated flow over a backward-facing step
,”
Int. J. Heat Fluid Flow
22
,
301
307
(
2001
).
76.
K.
Okada
,
T.
Nonomura
,
K.
Fujii
, and
K.
Miyaji
, “
Computational analysis of vortex structures induced by a synthetic jet to control separated flows
,”
Int. J. Flow Control
4
,
47
65
(
2012
).
77.
N. A.
Buchmann
,
C.
Atkinson
, and
J.
Soria
, “
Influence of znmf jet flow control on the spatio-temporal flow structure over a naca-0015 airfoil
,”
Exp. Fluids
54
,
1485
(
2013
).
78.
T. N.
Jukes
,
T.
Segawa
, and
H.
Furutani
, “
Flow control on a naca 4418 using dielectric-barrier-discharge vortex generators
,”
AIAA J.
51
,
452
465
(
2013
).
You do not currently have access to this content.