A molecular dynamics simulation of planar Couette flow is presented for the minimal channel in which turbulence structures can be sustained. Evolution over a single breakdown and regeneration cycle is compared to computational fluid dynamics simulations. Qualitative similar structures are observed and turbulent statistics show excellent quantitative agreement. The molecular scale law of the wall is presented in which stick-slip molecular wall-fluid interactions replace the no-slip conditions. The impact of grid resolution is explored and the observed structures are seen to be dependent on averaging time and length scales. The kinetic energy spectra show that a range of scales are present in the molecular system and that spectral content is dependent on the grid resolution employed. The subgrid velocity of the molecules is studied using joint probability density functions, molecular trajectories, diffusion, and Lagrangian statistics. The importance of sub-grid scales, relevance of the Kolmogorov lengthscale, and implications of molecular turbulence are discussed.

1.
S. B.
Pope
,
Turbulent Flows
, 1st ed. (
Cambridge University Press
,
2000
).
2.
A.
Muriel
, “
A molecular basis for the onset of turbulence
,”
J. Vac. Sci. Technol., A
27
(
2
),
315
(
2009
).
3.
C.
Hirsch
,
Numerical Computation of Internal and External Flows
, 2nd ed. (
Elsevier
,
Oxford
,
2007
).
4.
M.
Gad-el Hak
, “
Gas and liquid transport at the microscale
,”
Heat Transfer Eng.
27
(
4
),
13
(
2006
).
5.
D. J.
Evans
and
G. P.
Morriss
,
Statistical Mechanics of Non-Equilibrium Liquids
, 2nd ed. (
Australian National University Press
,
Canberra
,
2007
).
6.
W. G.
Hoover
, “
Structure of a shock-wave front in a liquid
,”
Phys. Rev. Lett.
42
,
1531
(
1979
).
7.
H.
Okumura
and
N.
Ito
, “
Nonequilibrium molecular dynamics simulations of a bubble
,”
Phys. Rev. E
67
,
045301
(
2003
).
8.
P. A.
Thompson
,
W. B.
Brinckerhoff
, and
M. O.
Robbins
, “
Microscopic studies of static and dynamic contact angles
,”
J. Adhes. Sci. Technol.
7
(
6
),
535
554
(
1993
).
9.
M. E.
Tuckerman
,
Statistical Mechanics: Theory and Molecular Simulation
, 1st ed. (
Oxford University Press
,
2010
).
10.
D. J.
Evans
and
G. P.
Morriss
, “
Shear thickening and turbulence in simple fluids
,”
Phys. Rev. Lett.
56
,
2172
2175
(
1986
).
11.
W. G.
Hoover
,
Computational Statistical Mechanics
, 1st ed. (
Elsevier Science
,
Oxford
,
1991
).
12.
D. C.
Rapaport
, “
Microscale hydrodynamics: Discrete particle simulations of evolving flow patterns
,”
Phys. Rev. A
36
,
3288
(
1987
).
13.
S. T.
Cui
and
D. J.
Evans
, “
Molecular dynamics simulation of two dimensional flow past a plate
,”
Mol. Simul.
9
(
3
),
179
(
1992
).
14.
E.
Meiburg
, “
Comparison of the molecular dynamics method and the direct simulation Monte Carlo technique for flows around simple geometries
,”
Phys. Fluids
29
(
10
),
3107
(
1986
).
15.
D.
Hirshfeld
and
D. C.
Rapaport
, “
Molecular dynamics simulation of Taylor-Couette vortex formation
,”
Phys. Rev. Lett.
80
(
24
),
5337
(
1998
).
16.
D.
Hirshfeld
and
D. C.
Rapaport
, “
Growth of Taylor vortices: A molecular dynamics study
,”
Phys. Rev. E
61
,
R21
(
2000
).
17.
D. C.
Rapaport
, “
Molecular dynamics simulation: A tool for exploration and discovery using simple models
,”
J. Phys.: Condens. Matter
26
(
50
),
503104
(
2014
).
18.
D. C.
Rapaport
, “
Molecular dynamics study of Rayleigh-Benard convection
,”
Phys. Rev. Lett.
60
,
2480
(
1988
).
19.
K.
Kadau
,
T. C.
Germann
,
N. G.
Hadjiconstantinou
,
P. S.
Lomdahl
,
G.
Dimonte
,
B. L.
Holian
, and
B. J.
Alder
, “
Nanohydrodynamics simulations: An atomistic view of the Rayleigh–Taylor instability
,”
Proc. Natl. Acad. Sci. U. S. A.
101
(
16
),
5851
(
2004
).
20.
W.
Dzwinel
,
W.
Alda
,
M.
Pogoda
, and
D. A.
Yuen
, “
Turbulent mixing in the microscale: A 2D molecular dynamics simulation
,”
Physica D
137
(
1–2
),
157
(
2000
).
21.
S.
Root
,
R. J.
Hardy
,
D. R.
Swanson
,
S.
Root
,
R. J.
Hardy
, and
D. R.
Swanson
, “
Continuum predictions from molecular dynamics simulations: Shock waves
,”
J. Chem. Phys.
118
,
3161
(
2003
).
22.
J.
Jimenez
and
P.
Moin
, “
The minimal flow unit in near-wall turbulence
,”
J. Fluid Mech.
225
,
213
(
1991
).
23.
J. M.
Hamilton
,
J.
Kim
, and
F.
Waleffe
, “
Regeneration mechanisms of near-wall turbulence structures
,”
J. Fluid Mech.
287
,
317
(
1995
).
24.
J.
Jiménez
, “
Near-wall turbulence
,”
Phys. Fluids
25
(
10
),
101302
(
2013
).
25.
D.
Viswanath
, “
Recurrent motions within plane Couette turbulence
,”
J. Fluid Mech.
580
,
339
(
2007
).
26.
J. F.
Gibson
,
Channelflow: A Spectral Navier-Stokes Simulator in C++, Technical Report
(
University of New Hampshire
,
2012
), Channelflow.org.
27.
M. Y.
Hussaini
,
A. M.
Quarteroni
,
Th. A.
Zang
, Jr.
, and
C.
Canuto
,
Spectral Methods in Fluid Dynamics
, 3rd ed. (
Springer-Verlag
,
1988
).
28.
J. F.
Gibson
,
J.
Halcrow
, and
P.
Cvitanović
, “
Visualizing the geometry of state space in plane Couette flow
,”
J. Fluid Mech.
611
,
107
(
2008
); e-print arXiv:0705.3957.
29.
K. H.
Bech
,
N.
Tillmark
,
P. H.
Alfredsson
, and
H. I.
Andersson
, “
An investigation of turbulent plane Couette flow at low Reynolds numbers
,”
J. Fluid Mech.
286
,
291
(
1995
).
30.
D. C.
Rapaport
,
The Art of Molecular Dynamics Simulation
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2004
).
31.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
, 1st ed. (
Clarendon Press
,
Oxford
,
1987
).
32.
E. R.
Smith
, “
On the coupling of molecular dynamics to continuum computational fluid dynamics
,” Ph.D. thesis,
Imperial College
, London,
2014
.
33.
E. R.
Smith
,
D. M.
Heyes
,
D.
Dini
, and
T. A.
Zaki
, “
Control-volume representation of molecular dynamics
,”
Phys. Rev. E
85
,
056705
(
2012
).
34.
D. M.
Heyes
,
E. R.
Smith
,
D.
Dini
, and
T. A.
Zaki
, “
The method of planes pressure tensor for a spherical subvolume
,”
J. Chem. Phys.
140
(
5
),
054506
(
2014
).
35.
D. M.
Heyes
,
E. R.
Smith
,
D.
Dini
, and
T. A.
Zaki
, “
The equivalence between volume averaging and method of planes denitions of the pressure tensor at a plane
,”
J. Chem. Phys.
135
,
024512
(
2011
).
36.
S.
Bernardi
,
B. D.
Todd
,
J. S.
Hansen
,
D. J.
Searles
, and
F.
Frascoli
, “
Lyapunov spectra and conjugate-pairing rule for confined atomic fluids
,”
J. Chem. Phys.
132
(
24
),
244508
(
2010
).
37.
J.
Petravic
and
P.
Harrowell
, “
The boundary fluctuation theory of transport coefficients in the linear-response limit
,”
J. Chem. Phys.
124
,
014103
(
2006
).
38.
S.
Nosé
, “
A molecular dynamics method for simulations in the canonical ensemble
,”
Mol. Phys.
52
(
2
),
255
(
1984
).
39.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
(
1985
).
40.
S.
Bernardi
,
B. D.
Todd
, and
D. J.
Searles
, “
Thermostating highly confined fluids
,”
J. Chem. Phys.
132
(
24
),
244706
(
2010
).
41.
J. H.
Irving
and
J. G.
Kirkwood
, “
The statistical mechanics theory of transport processes. IV. The equations of hydrodynamics
,”
J. Chem. Phys.
18
,
817
(
1950
).
42.
B. D.
Todd
,
D. J.
Evans
, and
P. J.
Daivis
, “
Pressure tensor for inhomogeneous fluids
,”
Phys. Rev. E
52
,
1627
(
1995
).
43.
K. P.
Travis
and
K. E.
Gubbins
, “
Poiseuille flow of Lennard-Jones fluids in narrow slit pores
,”
J. Chem. Phys.
112
(
4
),
1984
1994
(
2000
).
44.
A.
Ahmed
and
R. J.
Sadus
, “
Phase diagram of the Weeks-Chandler-Andersen potential from very low to high temperatures and pressures
,”
Phys. Rev. E
80
,
061101
(
2009
).
45.
W. D.
Gropp
,
E. L.
Lusk
, and
A.
Skjellum
,
Using MPI: Portable Parallel Programming with the Message-Passing Interface
, 1st ed. (
MIT Press
,
1999
), Vol.
1
.
46.
J. A.
Anderson
,
C. D.
Lorenz
, and
A.
Travesset
, “
General purpose molecular dynamics simulation fully implemented on graphical processing units
,”
J. Comput. Phys.
227
,
5342
(
2008
).
47.
T. R.
Smith
,
J.
Moehlis
, and
P.
Holmes
, “
Low-dimensional models for turbulent plane Couette flow in a minimal flow unit
,”
J. Fluid Mech.
538
,
71
(
2005
).
48.

Note: From the ideal gas equations, the predicted speed of sound is about 130 m/s (T = 48 K), although to take into account the effect of dense fluid effects, the speed of sound is measured by an initial shock wave observed on start-up which moves at 248 m/s.

49.
G.
Kawahara
and
S.
Kida
, “
Periodic motion embedded in plane Couette turbulence: Regeneration cycle and burst
,”
J. Fluid Mech.
449
,
291
(
2001
).
50.
F.
Waleffe
, “
Homotopy of exact coherent structures in plane shear flows
,”
Phys. Fluids
15
(
6
),
1517
(
2003
).
51.
S. J.
O’Shea
,
M. E.
Welland
, and
J. B.
Pethica
, “
Atomic force microscopy of local compliance at solidliquid interfaces
,”
Chem. Phys. Lett.
223
(
4
),
336
340
(
1994
).
52.
A. A.
Townsend
,
The Structure of Turbulent Shear Flow
,
Cambridge Monographs on Mechanics
, 2nd ed. (
Cambridge University Press
,
1980
).
53.
S. J.
Kline
,
W. C.
Reynolds
,
F. A.
Schraub
, and
P. W.
Runstadler
, “
The structure of turbulent boundary layers
,”
J. Fluid Mech.
30
,
741
773
(
1967
).
54.
R.
Zwanzig
, “
On the relation between selfdiffusion and viscosity of liquids
,”
J. Chem. Phys.
79
(
9
),
4507
(
1983
).
55.
K. P.
Nolan
,
E. J.
Walsh
, and
D. M.
Mceligot
, “
Quadrant analysis of a transitional boundary layer subject to free-stream turbulence
,”
J. Fluid Mech.
658
,
310
335
(
2010
).
56.
A.
Rahman
, “
Correlations in the motion of atoms in liquid argon
,”
Phys. Rev.
136
,
A405
A411
(
1964
).
57.
F.
Toschi
and
E.
Bodenschatz
, “
Lagrangian properties of particles in turbulence
,”
Annu. Rev. Fluid Mech.
41
,
375
404
(
2009
).
58.
R.
Ni
,
S.-D.
Huang
, and
K.-Q.
Xia
, “
Lagrangian acceleration measurements in convective thermal turbulence
,”
J. Fluid Mech.
692
,
395
419
(
2012
).
59.
L.
Biferale
,
E.
Bodenschatz
,
M.
Cencini
,
A. S.
Lanotte
,
N. T.
Ouellette
,
F.
Toschi
, and
H.
Xu
, “
Lagrangian structure functions in turbulence: A quantitative comparison between experiment and direct numerical simulation
,”
Phys. Fluids
20
(
6
),
065103
(
2008
).
60.
B. J.
Alder
and
T. E.
Wainwright
, “
Decay of the velocity autocorrelation function
,”
Phys. Rev. A
1
,
18
21
(
1970
).
61.
P. T.
Cummings
,
B. Y.
Wang
,
D. J.
Evans
, and
K. J.
Fraser
, “
Nonequilibrium molecular dynamics calculation of self-diffusion in a non-Newtonian fluid subject to a Couette strain field
,”
J. Chem. Phys.
94
(
3
),
2149
(
1991
).
62.
O.
Reynolds
, “
On the dynamical theory of incompressible viscous fluids and the determination of the criterion
,”
Philos. Trans. R. Soc., A
186
,
123
164
(
1895
).
63.
U.
Frisch
and
M.
Vergassola
, “
A prediction of the multifractal model: The intermediate dissipation range
,” in
New Approaches and Concepts in Turbulence
,
Monte Verità
, edited by
T.
Dracos
and
A.
Tsinober
(
Birkhuser
,
Basel
,
1993
).
64.
E. M.
Aydin
and
H. J.
Leutheusser
, “
Plane-Couette flow between smooth and rough walls
,”
Exp. Fluids
11
(
5
),
302
312
(
1991
).
65.
M. C.
Potter
and
D. C.
Wiggert
,
Mechanics of Fluids
, 3rd ed. (
Brooks/Cole
,
California
,
2002
).
66.
J.
Kim
,
P.
Moin
, and
R.
Moser
, “
Turbulence statistics in fully developed channel flow at low Reynolds number
,”
J. Fluid Mech.
177
(
1
),
133
(
1987
).
67.
K.
Kadau
,
J. L.
Barber
,
T. C.
Germann
,
B. L.
Holian
, and
B. J.
Alder
, “
Atomistic methods in fluid simulation
,”
Philos. Trans. R. Soc., A
368
(
1916
),
1547
(
2010
).
68.
A. F.
Tuck
, “
From molecules to meteorology via turbulent scale invariance
,”
Q. J. R. Meteorol. Soc.
136
(
650
),
1125
1144
(
2010
).
69.
A.
Muriel
, “
Three related proposals for a theoretical definition of turbulence
,”
Physica A
388
(
4
),
311
(
2009
).
70.
J. M. O.
de Zárate
and
J. V.
Sengers
, “
Hydrodynamic fluctuations in laminar fluid flow. II. Fluctuating squire equation
,”
J. Stat. Phys.
150
(
3
),
540
558
(
2013
).
71.
J. L.
McWhirter
, “
The stability of planar Couette flow simulated by molecular dynamics
,”
J. Chem. Phys.
118
(
6
), (
2003
).
72.
T. O.
Jelly
,
S. Y.
Jung
, and
T. A.
Zaki
, “
Turbulence and skin friction modification in channel flow with streamwise-aligned superhydrophobic surface texture
,”
Phys. Fluids
26
(
9
),
095102
(
2014
).
73.
S. T.
O’Connell
and
P. A.
Thompson
, “
Molecular dynamics-continuum hybrid computations: A tool for studying complex fluid flow
,”
Phys. Rev. E
52
,
R5792
(
1995
).
74.
N. G.
Hadjiconstantinou
, “
Hybrid atomistic–continuum formulations and the moving contact-line problem
,” Ph.D. thesis,
MIT
, USA,
1998
.
75.
K. M.
Mohamed
and
A. A.
Mohamad
, “
A review of the development of hybrid atomistic-continuum methods for dense fluids
,”
Microfluid. Nanofluid.
8
,
283
(
2009
).
76.
See supplementary material at http://dx.doi.org/10.1063/1.4935213 for videos of Figs.3 and 4.

Supplementary Material

You do not currently have access to this content.