This work extends a one-dimensional continuum model for granular flows down inclined planes [C. H. Lee and C. J. Huang, “Kinetic-theory-based model of dense granular flows down inclined planes,” Phys. Fluids 24, 073303 (2012)] to solve three-dimensional problems involving both static and flow states. The new model decomposes the shear stress and pressure into enduring-contact and kinetic components. One novelty of the present model is the determination of the enduring-contact component of pressure, which is a composition of a pressure depending only on the volume fraction and a pressure derived from the dilatancy law together with the equation of state from the kinetic theory. Another novelty of this study is a new numerical scheme that can avoid numerical instability caused by large volume fractions. To demonstrate its capability, the present model is applied to simulate the collapse of a granular column with various aspect ratios. The evolution of the column shape, the flow field, the final height, and the run-out predicted by the present model agree well with those provided by discrete element methods and experiments.

1.
R.
Nedderman
,
Statics and Kinematics of Granular Materials
(
Cambridge University Press
,
Cambridge
,
1992
).
2.
P.
Jop
,
Y.
Forterre
, and
O.
Pouliquen
, “
A constitutive law for dense granular flows
,”
Nature
441
,
727
(
2006
).
3.
J. T.
Jenkins
and
M. W.
Richman
, “
Grad’s 13-moment system for a dense gas of inelastic spheres
,”
Arch. Ration. Mech. Anal.
87
,
355
(
1985
).
4.
C. K. K.
Lun
, “
Kinetic-theory for granular flow of dense, slightly inelastic, slightly rough spheres
,”
J. Fluid Mech.
233
,
539
(
1991
).
5.
J. T.
Jenkins
and
M. W.
Richman
, “
Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks
,”
Phys. Fluids
28
,
3485
(
1985
).
6.
J. T.
Jenkins
, “
Dense shearing flows of inelastic disks
,”
Phys. Fluids
18
,
103307
(
2006
).
7.
C. H.
Lee
and
C. J.
Huang
, “
Model of sheared granular material and application to surface-driven granular flows under gravity
,”
Phys. Fluids
22
,
043307
(
2010
).
8.
C. H.
Lee
and
C. J.
Huang
, “
Kinetic-theory-based model of dense granular flows down inclined planes
,”
Phys. Fluids
24
,
073303
(
2012
).
9.
J. T.
Jenkins
, “
Dense inclined flows of inelastic spheres
,”
Granular Matter
10
,
47
(
2007
).
10.
P. C.
Johnson
and
R.
Jackson
, “
Frictional–collisional constitutive relations for granular materials, with application to plane shearing
,”
J. Fluid Mech.
176
,
67
(
1987
).
11.
P. C.
Johnson
,
P.
Nott
, and
R.
Jackson
, “
Frictional–collisional equations of motion for participate flows and their application to chutes
,”
J. Fluid Mech.
210
,
501
(
1990
).
12.
M.
Louge
, “
Model for dense granular flows down bumpy inclines
,”
Phys. Rev. E
67
,
061303
(
2003
).
13.
M.
Bisi
,
G.
Spiga
, and
G.
Toscani
, “
Grad’s equations and hydrodynamics for weakly inelastic granular flows
,”
Phys. Fluids
16
,
4235
(
2004
).
14.
J. J.
Brey
and
J. W.
Dufty
, “
Hydrodynamic modes for a granular gas from kinetic theory
,”
Phys. Rev. E
72
,
011303
(
2005
).
15.
D.
Berzi
,
C. G. di
Prisco
, and
D.
Vescovi
, “
Constitutive relations for steady, dense granular flows
,”
Phys. Rev. E
84
,
031301
(
2011
).
16.
J. J.
Brey
,
J. W.
Dufty
,
C. S.
Kim
, and
A.
Santos
, “
Hydrodynamics for granular flow at low density
,”
Phys. Rev. E
58
,
4638
(
1998
).
17.
B. C.
Eu
and
H.
Farhat
, “
Kinetic theory of fluidized granular matter
,”
Phys. Rev. E
55
,
4187
(
1997
).
18.
V.
Garzo
and
J. W.
Dufty
, “
Dense fluid transport for inelastic hard spheres
,”
Phys. Rev. E
59
,
5895
(
1999
).
19.
H.
Jaeger
,
S.
Nagel
, and
R.
Behringer
, “
Granular solids, liquids, and gases
,”
Rev. Mod. Phys.
68
,
1259
(
1996
).
20.
Y.
Forterre
and
O.
Pouliquen
, “
Flows of dense granular media
,”
Annu. Rev. Fluid Mech
40
,
1
(
2008
).
21.
Y.
Zhang
and
C. S.
Campbell
, “
The interface between fluid-like and solid-like behaviour in two-dimensional granular flows
,”
J. Fluid Mech.
237
,
541
(
1992
).
22.
T. J.
Hsu
,
J. T.
Jenkins
, and
P. L. F.
Liu
, “
On two-phase sediment transport: Sheet flow of massive particles
,”
Proc. R. Soc. A
460
,
2223
(
2004
).
23.
C.
Josserand
,
P.
Lagree
, and
D.
Lhuillier
, “
Granular pressure and the thickness of a layer jamming on a rough incline
,”
Europhys. Lett.
73
,
363
(
2006
).
24.
C. S.
Campbell
, “
Stress-controlled elastic granular shear flows
,”
J. Fluid Mech.
539
,
273
(
2005
).
25.
S.
Chialvo
,
J.
Sun
, and
S.
Sundaresan
, “
Bridging the rheology of granular flows in three regimes
,”
Phys. Rev. E
85
,
021305
(
2012
).
26.
C. S.
Campbell
, “
Granular shear flows at the elastic limit
,”
J. Fluid Mech.
465
,
261
(
2002
).
27.
F. da
Cruz
,
S.
Emam
,
M.
Prochnow
,
J. N.
Roux
, and
F.
Chevoir
, “
Rheophysics of dense granular materials: Discrete simulation of plane shear flows
,”
Phys. Rev. E
72
,
021309
(
2005
).
28.
G. D. R.
MiDi
, “
On dense granular flows
,”
Eur. Phys. J. E
14
,
341
(
2004
).
29.
O.
Pouliquen
, “
Scaling laws in granular flows down rough inclined planes
,”
Phys. Fluids
11
,
542
(
1999
).
30.
P.
Jop
,
Y.
Forterre
, and
O.
Pouliquen
, “
Initiation of granular surface flows in a narrow channel
,”
Phys. Fluids
19
,
088102
(
2007
).
31.
O.
Pouliquen
,
C.
Cassar
,
P.
Jop
,
Y.
Forterre
, and
M.
Nicolas
, “
Flow of dense granular material: Towards simple constitutive laws
,”
J. Stat. Mech.: Theory Exp.
2006
,
P07020
.
32.
P.-Y.
Lagrée
,
L.
Staron
, and
S.
Popinet
, “
The granular column collapse as a continuum: Validity of a two-dimensional Navier–Stokes model with a μ(I)-rheology
,”
J. Fluid Mech.
686
,
378
(
2011
).
33.
I.
Ionescu
,
A.
Mangeney
,
F.
Bouchut
, and
O.
Roche
, “
Viscoplastic modelling of granular column collapse with pressure dependent rheology
,”
J. Non-Newtonian Fluid Mech.
219
,
1
(
2015
).
34.
L.
Staron
,
P.-Y.
Lagrée
, and
S.
Popinet
, “
Continuum simulation of the discharge of the granular silo: A validation test for the μ(I) visco-plastic flow law
,”
Eur. Phys. J. E
37
,
5
(
2014
).
35.
D.
Volfson
,
L. S.
Tsimring
, and
I. S.
Aranson
, “
Partially fluidized shear granular flows: Continuum theory and molecular dynamics simulations
,”
Phys. Rev. E
68
,
021301
(
2003
).
36.
J.
Chauchat
and
M.
Médale
, “
A three-dimensional numerical model for dense granular flows based on the rheology
,”
J. Comput. Phys.
256
,
696
(
2014
).
37.
L.
Staron
,
P.-Y.
Lagrée
, and
S.
Popinet
, “
The granular silo as a continuum plastic flow: The hour-glass vs the clepsydra
,”
Phys. Fluids
24
,
103301
(
2012
).
38.
L.
Bocquet
,
W.
Losert
,
D.
Schalk
,
T. C.
Lubensky
, and
J. P.
Gollub
, “
Granular shear flow dynamics and forces: Experiment and continuum theory
,”
Phys. Rev. E
65
,
011307
(
2001
).
39.
L.
Bocquet
,
J.
Errami
, and
T. C.
Lubensky
, “
Hydrodynamic model for a dynamical jammed-to-flowing transition in gravity driven granular media
,”
Phys. Rev. Lett.
89
,
184301
(
2002
).
40.
D.
Volfson
,
L. S.
Tsimring
, and
I. S.
Aranson
, “
Stick-slip dynamics of a granular layer under shear
,”
Phys. Rev. E
69
,
031302
(
2004
).
41.
D.
Volfson
,
L. S.
Tsimring
, and
I. S.
Aranson
, “
Order parameter description of stationary partially fluidized shear granular flows
,”
Phys. Rev. Lett.
90
,
254301
(
2003
).
42.
I. S.
Aranson
and
L. S.
Tsimring
, “
Continuum theory of partially fluidized granular flows
,”
Phys. Rev. E
65
,
061303
(
2002
).
43.
A.
Mangeney
,
L.
Tsimring
,
D.
Volfson
,
I.
Aranson
, and
F.
Bouchut
, “
Avalanche mobility induced by the presence of an erodible bed and associated entrainment
,”
Geophys. Res. Lett.
34
,
L22401
, doi:10.1029/2007GL031348 (
2007
).
44.
M.
Louge
and
S.
Keast
, “
On dense granular flows down flat frictional inclines
,”
Phys. Fluids
13
,
1213
(
2001
).
45.
D.
Vescovi
,
D.
Berzi
,
P.
Richard
, and
N.
Brodu
, “
Plane shear flows of frictionless spheres: Kinetic theory and 3D soft-sphere discrete element method simulations
,”
Phys. Fluids
26
,
053305
(
2014
).
46.
P.-E.
Peyneau
and
J.-N.
Roux
, “
Frictionless bead packs have macroscopic friction, but no dilatancy
,”
Phys. Rev. E
78
,
011307
(
2008
).
47.
T.
Hatano
, “
Power-law friction in closely packed granular materials
,”
Phys. Rev. E
75
,
060301
(
2007
).
48.
V.
Vidyapati
and
S.
Subramaniam
, “
Granular rheology and phase transition: DEM simulations and order-parameter based constitutive model
,”
Chem. Eng. Sci.
72
,
20
(
2012
).
49.
E.
Lajeunesse
,
J. B.
Monnier
, and
G. M.
Homsy
, “
Granular slumping on a horizontal surface
,”
Phys. Fluids
17
,
103302
(
2005
).
50.
C.
Kloss
,
C.
Goniva
,
A.
Hager
,
S.
Amberger
, and
S.
Pirker
, “
Models, algorithms and validation for opensource DEM and CFD–DEM
,”
Prog. Comput. Fluid Dyn.
12
,
140
(
2012
).
51.
M.
Babic
, “
Average balance equations for granular materials
,”
Int. J. Eng. Sci.
35
,
523
(
1997
).
52.
H. P.
Zhu
and
A. B.
Yu
, “
Averaging method of granular materials
,”
Phys. Rev. E
66
,
021302
(
2002
).
53.
S.
Savage
, “
Analyses of slow high-concentration flows of granular materials
,”
J. Fluid Mech.
377
,
1
(
1998
).
54.
D.
Berzi
and
J. T.
Jenkins
, “
Steady shearing flows of deformable, inelastic spheres
,”
Soft Matter
11
,
4799
(
2015
).
55.
D.
Berzi
and
D.
Vescovi
, “
Different singularities in the functions of extended kinetic theory at the origin of the yield stress in granular flows
,”
Phys. Fluids
27
,
013302
(
2015
).
56.
D. K.
Yoon
and
J. T.
Jenkins
, “
Kinetic theory for identical, frictional, nearly elastic disks
,”
Phys. Fluids
17
,
083301
(
2005
).
57.
J. T.
Jenkins
and
C.
Zhang
, “
Kinetic theory for identical, frictional, nearly elastic spheres
,”
Phys. Fluids
14
,
1228
(
2002
).
58.
T. C.
Papanastasiou
, “
Flows of materials with yield
,”
J. Rheol.
31
,
385
(
1987
).
59.
H.
Jasak
, “
OpenFOAM: Open source CFD in research and industry
,”
Int. J. Nav. Archit. Ocean Eng.
1
,
89
(
2009
).
60.
H.
Rusche
, “
Computational fluid dynamics of dispersed two-phase flows at high phase fractions
,” Ph.D. thesis,
University of London
, London,
2003
.
61.
H.
Jasak
, “
Error analysis and estimation for the finite volume method with applications to fluid flows
,” Ph.D. thesis,
University of London
, London,
1996
.
62.
G.
Lube
,
H. E.
Huppert
,
R. S. J.
Sparks
, and
A.
Freundt
, “
Collapses of two-dimensional granular columns
,”
Phys. Rev. E
72
,
041301
(
2005
).
63.
L.
Girolami
,
V.
Hergault
,
G.
Vinay
, and
A.
Wachs
, “
A three-dimensional discrete-grain model for the simulation of dam-break rectangular collapses: Comparison between numerical results and experiments
,”
Granular Matter
14
,
381
(
2012
).
64.
M.
Richman
, “
Boundary conditions based upon a modified Maxwellian velocity distribution for flows of identical, smooth, nearly elastic spheres
,”
Acta Mech.
75
,
227
(
1988
).
65.
G.
Lube
,
H. E.
Huppert
,
R. S. J.
Sparks
, and
M. A.
Hallworth
, “
Axisymmetric collapses of granular columns
,”
J. Fluid Mech.
508
,
175
(
2004
).
66.
F. A.
Dullien
,
Porous Media: Fluid Transport and Pore Structure
(
Academic Press
,
New York
,
1991
).
67.
S.
Torquato
, “
Nearest-neighbor statistics for packings of hard spheres and disks
,”
Phys. Rev. E
51
,
3170
(
1995
).
68.
G.
Lube
,
H. E.
Huppert
,
R. S. J.
Sparks
, and
A.
Freundt
, “
Granular column collapses down rough, inclined channels
,”
J. Fluid Mech.
675
,
347
(
2011
).
69.
R.
Albert
,
I.
Albert
,
D.
Hornbaker
,
P.
Schiffer
, and
A.-L.
Barabási
, “
Maximum angle of stability in wet and dry spherical granular media
,”
Phys. Rev. E
56
,
R6271
(
1997
).
70.
N.
Balmforth
and
R.
Kerswell
, “
Granular collapse in two dimensions
,”
J. Fluid Mech.
538
,
399
(
2005
).
71.
P.
Jop
,
Y.
Forterre
, and
O.
Pouliquen
, “
Crucial role of sidewalls in granular surface flows: Consequences for the rheology
,”
J. Fluid Mech.
541
,
167
(
2005
).
72.
E.
Larrieu
,
L.
Staron
, and
E.
Hinch
, “
Raining into shallow water as a description of the collapse of a column of grains
,”
J. Fluid Mech.
554
,
259
(
2006
).
73.
A.
Mangeney-Castelnau
,
F.
Bouchut
,
J.
Vilotte
,
E.
Lajeunesse
,
A.
Aubertin
, and
M.
Pirulli
, “
On the use of Saint Venant equations to simulate the spreading of a granular mass
,”
J. Geophys. Res.
110
,
B09103
, doi:10.1029/2004jb003161doi:10.1029/2004jb003161 (
2005
).
74.
E. E.
Doyle
,
H. E.
Huppert
,
G.
Lube
,
H. M.
Mader
, and
R. S. J.
Sparks
, “
Static and flowing regions in granular collapses down channels: Insights from a sedimenting shallow water model
,”
Phys. Fluids
19
,
106601
(
2007
).
75.
R.
Kerswell
, “
Dam break with Coulomb friction: A model for granular slumping?
,”
Phys. Fluids
17
,
057101
(
2005
).
76.
G.
Crosta
,
S.
Imposimato
, and
D.
Roddeman
, “
Numerical modeling of 2-D granular step collapse on erodible and nonerodible surface
,”
J. Geophys. Res.
114
,
F03020
, doi:10.1029/2008jf001186 (
2009
).
77.
G. J.
Hwang
and
H. H.
Shen
, “
Modeling the solid-phase stress in a fluid solid mixture
,”
Int. J. Multiphase Flow
15
,
257
(
1989
).
78.
G. J.
Hwang
and
H. H.
Shen
, “
Modeling the phase interaction in the momentum equations of a fluid solid mixture
,”
Int. J. Multiphase Flow
17
,
45
(
1991
).
79.
G.-J.
Hwang
and
H. H.
Shen
, “
Fluctuation energy equations for turbulent fluid solid flows
,”
Int. J. Multiphase Flow
19
,
887
(
1993
).
80.
C.-H.
Lee
,
Z.
Huang
, and
Y.-M.
Chiew
, “
A multi-scale turbulent dispersion model for dilute flows with suspended sediment
,”
Adv. Water Resour.
79
,
18
(
2015
).
81.
See also,
C.
Lusso
,
A.
Ern
,
F.
Bouchut
,
A.
Mangeney
,
M.
Farin
, and
O.
Roche
, “
Two-dimensional simulation by regularization of free surface viscoplastic flows with Drucker-Prager yield stress and application to granular collapse
,” <hal-01133786> (
2015
).
You do not currently have access to this content.