We study here the steady state attained in a granular gas of inelastic rough spheres that is subject to a spatially uniform random volume force. The stochastic force has the form of the so-called white noise and acts by adding impulse to the particle translational velocities. We work out an analytical solution of the corresponding velocity distribution function from a Sonine polynomial expansion that displays energy non-equipartition between the translational and rotational modes, translational and rotational kurtoses, and translational-rotational velocity correlations. By comparison with a numerical solution of the Boltzmann kinetic equation (by means of the direct simulation Monte Carlo method), we show that our analytical solution provides a good description that is quantitatively very accurate in certain ranges of inelasticity and roughness. We also find three important features that make the forced granular gas steady state very different from the homogeneous cooling state (attained by an unforced granular gas). First, the marginal velocity distributions are always close to a Maxwellian. Second, there is a continuous transition to the purely smooth limit (where the effects of particle rotations are ignored). And third, the angular translational-rotational velocity correlations show a preference for a quasiperpendicular mutual orientation (which is called “lifted-tennis-ball” behavior).

1.
P. G.
de Gennes
, “
Granular matter: A tentative view
,”
Rev. Mod. Phys.
71
,
S374
S382
(
1999
).
2.
R. A.
Bagnold
,
The Physics of Blown Sand and Desert Dunes
(
Dover Publications, Inc.
,
New York
,
1954
).
3.
H. M.
Jaeger
,
S. R.
Nagel
, and
R.
Behringer
, “
The physics of granular materials
,”
Phys. Today
49
(
4
),
32
38
(
1996
).
4.
O.
Reynolds
, “
On the dilatancy of media composed of rigid particles in contact. With experimental illustrations
,”
Philos. Mag. Ser. 5
20
,
469
481
(
1885
).
5.
A.
Castellanos
,
J. M.
Valverde
,
A. T.
Pérez
,
A.
Ramos
, and
P. K.
Watson
, “
Flow regimes in fine cohesive powders
,”
Phys. Rev. Lett.
82
,
1156
1159
(
1999
).
6.
J.
Rajchenbach
, “
Flow in powders: From discrete avalanches to continuous regime
,”
Phys. Rev. Lett.
65
,
2221
2224
(
1990
).
7.
I.
Goldhirsch
, “
Rapid granular flows
,”
Annu. Rev. Fluid Mech.
35
,
267
293
(
2003
).
8.
T. S.
Majmudar
and
R.
Behringer
, “
Contact force measurements and stress-induced anisotropy in granular materials
,”
Nature
435
,
1079
1082
(
2005
).
9.
C.
Goldenberg
and
I.
Goldhirsch
, “
Friction enhances elasticity in granular solids
,”
Nature
435
,
188
191
(
2005
).
10.
E. J.
Banigan
,
M. K.
Illich
,
D. J.
Stace-Naughton
, and
D. A.
Egolf
, “
The chaotic dynamics of jamming
,”
Nat. Phys.
9
,
288
292
(
2013
).
11.
N. V.
Brilliantov
and
T.
Pöschel
,
Kinetic Theory of Granular Gases
(
Oxford University Press
,
Oxford, UK
,
2004
).
12.
S.
Chapman
and
T. G.
Cowling
,
The Mathematical Theory of Non-Uniform Gases
, 3rd ed. (
Cambridge University Press
,
Cambridge, UK
,
1970
).
13.
J. J.
Brey
,
J. W.
Dufty
, and
A.
Santos
, “
Dissipative dynamics for hard spheres
,”
J. Stat. Phys.
87
,
1051
1066
(
1997
).
14.
R.
Soto
and
M.
Mareschal
, “
Statistical mechanics of fluidized granular media: Short-range velocity correlations
,”
Phys. Rev. E
63
,
041303
(
2001
).
15.
A.
Prevost
,
D. E.
Egolf
, and
J. S.
Urbach
, “
Forcing and velocity correlations in a vibrated granular monolayer
,”
Phys. Rev. Lett.
89
,
084301
(
2002
).
16.
J. J.
Brey
,
J. W.
Dufty
,
C. S.
Kim
, and
A.
Santos
, “
Hydrodynamics for granular flow at low density
,”
Phys. Rev. E
58
,
4638
4653
(
1998
).
17.
P. M.
Chaikin
and
T. C.
Lubensky
,
Principles of Condensed Matter Physics
(
Cambridge University Press
,
Cambridge, UK
,
2000
).
18.
J. W.
Dufty
, “
Kinetic theory and hydrodynamics for a low density granular gas
,”
Adv. Complex Syst.
4
,
397
406
(
2001
).
19.
V.
Garzó
,
J. W.
Dufty
, and
C. M.
Hrenya
, “
Enskog theory for polydisperse granular mixtures. I. Navier-Stokes order transport
,”
Phys. Rev. E
76
,
031303
(
2007
).
20.
C.
Cercignani
,
Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations
(
Cambridge University Press
,
Cambridge, UK
,
2000
).
21.
H.
Kuninaka
and
H.
Hayakawa
, “
Anomalous behavior of the coefficient of normal restitution in oblique impact
,”
Phys. Rev. Lett.
93
,
154301
(
2004
).
22.
T. S. N.
Brilliantov
,
C.
Salueña
, and
T.
Pöschel
, “
Transient structures in a granular gas
,”
Phys. Rev. Lett.
93
,
134301
(
2004
).
23.
S. F.
Foerster
,
M. Y.
Louge
,
H.
Chang
, and
K.
Allis
, “
Measurements of the collision properties of small spheres
,”
Phys. Fluids
6
,
1108
1115
(
1994
).
24.
I.
Goldhirsch
and
G.
Zanetti
, “
Clustering instability in dissipative gases
,”
Phys. Rev. Lett.
70
,
1619
1622
(
1993
).
25.
M. Y.
Louge
, “
The surprising relevance of a continuum description to granular clusters
,”
J. Fluid Mech.
742
,
1
4
(
2014
).
26.
P. P.
Mitrano
,
J. R.
Zenka
,
S.
Benyahia
,
J. E.
Galvin
,
S. R.
Dahl
, and
C. M.
Hrenya
, “
Kinetic-theory predictions of clustering instabilities in granular flows: Beyond the small-Knudsen-number regime
,”
J. Fluid Mech.
738
,
R2
R13
(
2014
).
27.
F. V.
Reyes
and
J. S.
Urbach
, “
Steady base states for Navier-Stokes granular hydrodynamics with boundary heating and shear
,”
J. Fluid Mech.
636
,
279
293
(
2009
).
28.
F. V.
Reyes
,
A.
Santos
, and
V.
Garzó
, “
Non-Newtonian granular hydrodynamics. What do the inelastic simple shear flow and the elastic Fourier flow have in common?
,”
Phys. Rev. Lett.
104
,
028001
(
2010
).
29.
N. V.
Brilliantov
,
T.
Pöschel
,
W. T.
Kranz
, and
A.
Zippelius
, “
Translations and rotations are correlated in granular gases
,”
Phys. Rev. Lett.
98
,
128001
(
2007
).
30.
R.
Rongali
and
M.
Alam
, “
Higher-order effects on orientational correlation and relaxation dynamics in homogeneous cooling of a rough granular gas
,”
Phys. Rev. E
89
,
062201
(
2014
).
31.
S.
Luding
,
M.
Huthmann
,
S.
McNamara
, and
A.
Zippelius
, “
Homogeneous cooling of rough, dissipative particles: Theory and simulations
,”
Phys. Rev. E
58
,
3416
3425
(
1998
).
32.
A.
Santos
,
G. M.
Kremer
, and
V.
Garzó
, “
Energy production rates in fluid mixtures of inelastic rough hard spheres
,”
Prog. Theor. Phys. Suppl.
184
,
31
48
(
2010
).
33.
A.
Santos
, “
Homogeneous free cooling state in binary granular fluids of inelastic rough hard spheres
,”
AIP Conf. Proc.
1333
,
128
133
(
2011
).
34.
I.
Goldhirsch
,
S. H.
Noskowicz
, and
O.
Bar-Lev
, “
Nearly smooth granular gases
,”
Phys. Rev. Lett.
95
,
068002
(
2005
).
35.
A.
Santos
,
G. M.
Kremer
, and
M.
dos Santos
, “
Sonine approximation for collisional moments of granular gases of inelastic rough spheres
,”
Phys. Fluids
23
,
030604
(
2011
).
36.
F. V.
Reyes
,
A.
Santos
, and
G. M.
Kremer
, “
Role of roughness on the hydrodynamic homogeneous base state of inelastic spheres
,”
Phys. Rev. E
89
,
020202(R)
(
2014
).
37.
G. M.
Kremer
,
A.
Santos
, and
V.
Garzó
, “
Transport coefficients of a granular gas of inelastic rough hard spheres
,”
Phys. Rev. E
90
,
022205
(
2014
).
38.
D. R. M.
Williams
, “
Driven granular media and dissipative gases: Correlations and liquid-gas phase transitions
,”
Physica A
233
,
718
729
(
1996
).
39.
D. R. M.
Williams
and
F. C.
MacKintosh
, “
Driven granular media in one dimension: Correlations and equation of state
,”
Phys. Rev. E
54
,
R9
R12
(
1996
).
40.
M. R.
Swift
,
M.
Boamfǎ
,
S. J.
Cornell
, and
A.
Maritan
, “
Scale invariant correlations in a driven dissipative gas
,”
Phys. Rev. Lett.
80
,
4410
4413
(
1998
).
41.
T. P. C.
van Noije
and
M. H.
Ernst
, “
Velocity distributions in homogeneous granular fluids: The free and the heated case
,”
Granular Matter
1
,
57
64
(
1998
).
42.
J. M.
Montanero
and
A.
Santos
, “
Computer simulation of uniformly heated granular fluids
,”
Granular Matter
2
,
53
64
(
2000
).
43.
A. V.
Bobylev
and
C.
Cercignani
, “
Moment equations for a granular material in a thermal bath
,”
J. Stat. Phys.
106
,
547
567
(
2002
).
44.
W. T.
Kranz
,
N. V.
Brilliantov
,
T.
Pöschel
, and
A.
Zippelius
, “
Correlation of spin and velocity in the homogeneous cooling state of a granular gas of rough particles
,”
Eur. Phys. J.: Spec. Top.
179
,
91
111
(
2009
).
45.
W.
Losert
,
L.
Bocquet
,
T. C.
Lubensky
, and
J. P.
Gollub
, “
Particle dynamics in sheared granular matter
,”
Phys. Rev. Lett.
85
,
1428
1431
(
2000
).
46.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Clarendon
,
Oxford
,
1994
).
47.
G.
Gradenigo
,
A.
Sarracino
,
D.
Villamaina
, and
A.
Puglisi
, “
Fluctuating hydrodynamics and correlation lengths in a driven granular fluid
,”
J. Stat. Mech.
2011
,
P08017
.
48.
R. P.
Ojha1
,
P.-A.
Lemieux
,
P. K.
Dixon
,
A. J.
Liu
, and
D. J.
Durian
, “
Statistical mechanics of a gas-fluidized particle
,”
Nature
427
,
521
523
(
2004
).
49.
G. M.
Kremer
,
An Introduction to the Boltzmann Equation and Transport Processes in Gases
(
Springer
,
Berlin
,
2010
).
50.
For an interactive animation, see A. Santos, “Inelastic collisions of two rough spheres,” Wolfram Demonstrations Project, 2010, http://demonstrations.wolfram.com/InelasticCollisionsOfTwoRoughSpheres/.
51.
Handbook of Mathematical Functions
, edited by
M.
Abramowitz
and
I. A.
Stegun
(
Dover
,
New York
,
1972
).
52.
See supplementary material at http://dx.doi.org/10.1063/1.4934727 for Mathematica codes.

Supplementary Material

You do not currently have access to this content.