Acoustically forced oscillation of spherical gas bubbles in a viscoelastic material is studied through comparisons between experiments and linear theory. An experimental setup has been designed to visualize bubble dynamics in gelatin gels using a high-speed camera. A spherical gas bubble is created by focusing an infrared laser pulse into (gas-supersaturated) gelatin gels. The bubble radius (up to 150 μm) under mechanical equilibrium is controlled by gradual mass transfer of gases across the bubble interface. The linearized bubble dynamics are studied from the observation of spherical bubble oscillation driven by low-intensity, planar ultrasound driven at 28 kHz. It follows from the experiment for an isolated bubble that the frequency response in its volumetric oscillation was shifted to the high frequency side and its peak was suppressed as the gelatin concentration increases. The measurement is fitted to the linearized Rayleigh–Plesset equation coupled with the Voigt constitutive equation that models the behavior of linear viscoelastic solids; the fitting yields good agreement by tuning unknown values of the viscosity and rigidity, indicating that more complex phenomena including shear thinning, stress relaxation, and retardation do not play an important role for the small-amplitude oscillations. Moreover, the cases for bubble-bubble and bubble-wall systems are studied. The observed interaction effect on the linearized dynamics can be explained as well by a set of the Rayleigh–Plesset equations coupled through acoustic radiation among these systems. This suggests that this experimental setup can be applied to validate the model of bubble dynamics with more complex configuration such as a cloud of bubbles in viscoelastic materials.

1.
C. E.
Brennen
,
Hydrodynamic of Pumps
(
Oxford University Press
,
1994
).
2.
S.
Qin
,
C. F.
Caskey
, and
K. W.
Ferrara
, “
Ultrasound contrast microbubbles in imaging and therapy: Physical principles and engineering
,”
Phys. Med. Biol.
54
(
6
),
R27
(
2009
).
3.
J. E.
Lingeman
, “
Extracorporeal shock wave lithotripsy: Development, instrumentation, and current status
,”
Urol. Clinics North Am.
24
(
1
),
185
211
(
1997
).
4.
M. R.
Bailey
,
J. A.
McAterr
,
Y. A.
Pishchalnikov
,
M. F.
Hamilton
, and
T.
Colonius
, “
Progress in lithotripsy research
,”
Acoust. Today
2
(
2
),
18
29
(
2006
).
5.
W. W.
Roberts
,
T. L.
Hall
,
K.
Ives
,
J. S.
Wolf
, Jr.
,
J. B.
Fowlkes
, and
C. A.
Cain
, “
Pulsed cavitational ultrasound: A noninvasive technology for controlled tissue ablation (histotripsy) in the rabbit kidney
,”
J. Urol.
175
(
2
),
734
738
(
2006
).
6.
H. S.
Fogler
and
J. D.
Goddard
, “
Collapse of spherical cavities in viscoelastic fluids
,”
Phys. Fluids
13
(
5
),
1135
1141
(
1970
).
7.
J. S.
Allen
and
R. A.
Roy
, “
Dynamics of gas bubbles in viscoelastic fluids. I. Linear viscoelasticity
,”
J. Acoust. Soc. Am.
107
(
6
),
3167
3178
(
2000
).
8.
J. S.
Allen
and
R. A.
Roy
, “
Dynamics of gas bubbles in viscoelastic fluids. II. Nonlinear viscoelasticity
,”
J. Acoust. Soc. Am.
108
(
4
),
1640
1650
(
2000
).
9.
X.
Yang
and
C. C.
Church
, “
A model for the dynamics of gas bubbles in soft tissue
,”
J. Acoust. Soc. Am.
118
(
6
),
3595
3606
(
2005
).
10.
C.
Hua
and
E.
Johnsen
, “
Nonlinear oscillations following the Rayleigh collapse of a gas bubble in a linear viscoelastic (tissue-like) medium
,”
Phys. Fluids
25
(
8
),
083101
(
2013
).
11.
M. T.
Warnez
and
E.
Johnsen
, “
Numerical modeling of bubble dynamics in viscoelastic media with relaxation
,”
Phys. Fluids
27
(
6
),
063103
(
2015
).
12.
R.
Gaudron
,
M. T.
Warnez
, and
E.
Johnsen
, “
Bubble dynamics in a viscoelastic medium with nonlinearity
,”
J. Fluid Mech.
766
,
54
75
(
2015
).
13.
A.
Vogel
,
J.
Noack
,
K.
Nahen
,
D.
Theisen
,
S.
Busch
,
U.
Parlitz
,
D. X.
Hammer
,
G. D.
Noojin
,
B. A.
Rockwell
, and
R.
Birngruber
, “
Energy balance of optical breakdown in water at nanosecond to femtosecond time scales
,”
Appl. Phys. B
68
(
2
),
271
280
(
1999
).
14.
A.
Vogel
, “
Nonlinear absorption: Intraocular microsurgery and laser lithotripsy
,”
Phys. Med. Biol.
42
(
5
),
895
(
1997
).
15.
E. A.
Brujan
,
C. D.
Ohl
,
W.
Lauterborn
, and
A.
Philipp
, “
Dynamics of laser-induced cavitation bubbles in polymer solutions
,”
Acustica
82
,
423
430
(
1996
); available at http://www.ingentaconnect.com/content/dav/aaua/1996/00000082/00000003/art00005.
16.
E. A.
Brujan
and
A.
Vogel
, “
Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom
,”
J. Fluid Mech.
558
,
281
308
(
2006
).
17.
F.
Hegedüs
,
S.
Koch
,
W.
Garen
,
Z.
Pandula
,
G.
Paal
,
L.
Kullmann
, and
U.
Teubner
, “
The effect of high viscosity on compressible and incompressible Rayleigh–Plesset-type bubble models
,”
Int. J. Heat Fluid Flow
42
,
200
208
(
2013
).
18.
T. G.
Leighton
,
A. J.
Walton
, and
M. J. W.
Pickworth
, “
Primary Bjerknes forces
,”
Eur. J. Phys.
11
,
47
50
(
1990
).
19.
T. G.
Leighton
, “
What is ultrasound?
,”
Prog. Biophys. Mol. Biol.
93
,
3
83
(
2007
).
20.
D. F.
Gaitan
,
L. A.
Crum
,
C. C.
Church
, and
R. A.
Roy
, “
Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble
,”
J. Acoust. Soc. Am.
91
(
6
),
3166
3183
(
1992
).
21.
R. G.
Holt
and
L. A.
Crum
, “
Acoustically forced oscillations of air bubbles in water: Experimental results
,”
J. Acoust. Soc. Am.
91
(
4
),
1924
1932
(
1992
).
22.
Y.
Tian
,
J. A.
Ketterling
, and
R. E.
Apfel
, “
Direct observation of microbubble oscillations
,”
J. Acoust. Soc. Am.
100
(
6
),
3976
3978
(
1996
).
23.
C. D.
Ohl
,
T.
Kurz
,
R.
Geisler
,
O.
Lindau
, and
W.
Lauterborn
, “
Bubble dynamics, shock waves and sonoluminescence
,”
Philos. Trans. R. Soc., A
357
(
1751
),
269
294
(
1999
).
24.
B.
Gompf
and
R.
Pecha
, “
Mie scattering from a sonoluminescing bubble with high spatial and temporal resolution
,”
Phys. Rev. E
61
(
5
),
5253
5256
(
2000
).
25.
M.
Kameda
and
Y.
Matsumoto
, “
Nonlinear oscillation of a spherical gas bubble in acoustic fields
,”
J. Acoust. Soc. Am.
106
(
6
),
3156
3166
(
1999
).
26.
M.
Emmer
,
A.
Wamel
,
D. E.
Goertz
, and
N.
de Jong
, “
The onset of microbubble vibration
,”
Ultrasound Med. Biol.
33
(
6
),
941
949
(
2007
).
27.
D.
Koyama
,
H.
Kotera
,
N.
Kitazawa
,
K.
Yoshida
,
K.
Nakamura
, and
Y.
Watanabe
, “
Vibration of a single microcapsule with a hard plastic shell in an acoustic standing wave field
,”
IEEE Trans. Ultrason. Eng.
58
(
4
),
737
743
(
2011
).
28.
L. A.
Crum
, “
Bjerknes forces on bubbles in a stationary sound field
,”
J. Acoust. Soc. Am.
57
(
6
),
1363
1370
(
1975
).
29.
K.
Yoshida
,
T.
Fujikawa
, and
Y.
Watanabe
, “
Experimental investigation on reversal of secondary Bjerknes force between two bubbles in ultrasonic standing wave
,”
J. Acoust. Soc. Am.
130
(
1
),
135
144
(
2011
).
30.
X.
Xi
,
F. B.
Cegla
,
M.
Lowe
,
A.
Thiemann
,
T.
Nowak
,
R.
Mettin
,
F.
Holsteyns
, and
A.
Lippert
, “
Study on the bubble transport mechanism in an acoustic standing wave field
,”
Ultrasonics
51
(
8
),
1014
1025
(
2011
).
31.
X.
Xi
,
F.
Cegla
,
R.
Mettin
,
F.
Holsteyns
, and
A.
Lippert
, “
Collective bubble dynamics near a surface in a weak acoustic standing wave field
,”
J. Acoust. Soc. Am.
132
(
1
),
37
47
(
2012
).
32.
T. J. A.
Kokhuis
,
V.
Garbin
,
K.
Kooiman
,
B. A.
Naaijkens
,
L. J. M.
Juffermans
,
O.
Kamp
,
A. F. W.
van der Steen
,
M.
Versluis
, and
N.
de Jong
, “
Secondary Bjerknes forces deform targeted microbubbles
,”
Ultrasound Med. Biol.
39
(
3
),
490
506
(
2013
).
33.
K.
Ando
,
A. Q.
Liu
, and
C. D.
Ohl
, “
Homogeneous nucleation in water in microfluidic channels
,”
Phys. Rev. Lett.
109
(
5
),
044501
(
2012
).
34.
T. G.
Leighton
,
The Acoustic Bubble
(
Academic Press
,
1994
).
35.
A.
Prosperetti
, “
A generalization of the Rayleigh–Plesset equation of bubble dynamics
,”
Phys. Fluids
25
(
3
),
409
410
(
1982
).
36.
A.
Prosperetti
, “
Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids
,”
J. Acoust. Soc. Am.
61
(
1
),
17
27
(
1977
).
37.
A.
Prosperetti
,
L. A.
Crum
, and
K. W.
Commander
, “
Nonlinear bubble dynamics
,”
J. Acoust. Soc. Am.
83
(
2
),
502
514
(
1988
).
38.
M.
Devaud
,
T.
Hocquet
,
J. C.
Barciand
, and
V.
Leroy
, “
The Minnaert bubble: An acoustic approach
,”
Eur. J. Phys.
29
(
7
),
1263
1285
(
2008
).
39.
O.
Vincent
,
P.
Marmottant
,
S. R.
Gonzalez-Avila
,
K.
Ando
, and
C. D.
Ohl
, “
The fast dynamics of cavitation bubbles within water confined in elastic solids
,”
Soft Matter
10
,
1455
1461
(
2014
).
40.
C. E.
Brennen
,
Cavitation and Bubble Dynamics
(
Oxford University Press
,
1995
).
41.
A.
Harkin
,
T. J.
Kaper
, and
A.
Nadim
, “
Coupled pulsation and translation of two gas bubbles in a liquid
,”
J. Fluid Mech.
445
,
377
411
(
2001
).
42.
P. S.
Epstein
and
M. S.
Plesset
, “
On the stability of gas bubbles in liquid-gas solutions
,”
J. Chem. Phys.
18
(
11
),
1505
1509
(
1950
).
43.
M. S.
Plesset
and
A.
Prosperetti
, “
Bubble dynamics and cavitation
,”
Annu. Rev. Fluid Mech.
9
,
145
185
(
1977
).
44.
K. W.
Miller
and
J. H.
Hildebrand
, “
Solutions of inert gases in water
,”
J. Am. Chem. Soc.
90
(
12
),
3001
3004
(
1968
).
45.
T. L.
Bergman
,
A. S.
Lavine
,
F. P.
Incropera
, and
D. P.
Dewitt
,
Fundamentals of Heat and Mass Transfer
(
John Wiley & Sons
,
2011
).
46.
P. B.
Duncan
and
D.
Needham
, “
Test of the Epstein–Plesset model for gas microparticle dissolution in aqueous media: Effect of surface tension and gas undersaturation in solution
,”
Langmuir
20
(
7
),
2567
2578
(
2004
).
47.
F.
Hamaguchi
, “
The effect of viscoelasticity on bubble dynamics under ultrasound irradiation
,” M.Eng. thesis,
Keio University
,
2015
.
48.
H.
Kikuchi
,
K.
Sakai
, and
K.
Takagi
, “
Surface tension wave on gelatin gel
,”
Jpn. J. Appl. Phys., Part 2
30
(
9B
),
L1668
(
1991
).
49.
A.
Bot
,
I. A.
van Amerongen
,
R. D.
Groot
,
N. L.
Hoekstra
, and
W. G. M.
Agterof
, “
Large deformation rheology of gelatin gels
,”
Polym. Gels Networks
4
(
3
),
189
227
(
1996
).
50.
S.
Yoon
,
S. R.
Aglyamov
,
A. B.
Karpiouk
,
S.
Kim
, and
S. Y.
Emelianov
, “
Estimation of mechanical properties of a viscoelastic medium using a laser-induced microbubble interrogated by an acoustic radiation force
,”
J. Acoust. Soc. Am.
130
(
4
),
2241
2248
(
2011
).
51.
A. D.
Maxwell
,
C. A.
Cain
,
T. L.
Hall
,
J. B.
Fowlkes
, and
Z.
Xu
, “
Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials
,”
Ultrasound Med. Biol.
39
(
3
),
449
465
(
2013
).
52.
B.
Han
,
K.
Köhler
,
K.
Jungnickel
,
R.
Mettin
,
W.
Lauterborn
, and
A.
Vogel
, “
Dynamics of laser-induced bubble pairs
,”
J. Fluid Mech.
771
,
706
742
(
2015
).
53.
M.
Morioka
, “
Theory of natural frequencies of two pulsating bubbles in infinite liquid
,”
J. Nucl. Sci. Technol.
11
(
12
),
554
560
(
1974
).
54.
N.
Bremond
,
M.
Arora
,
C. D.
Ohl
, and
D.
Lohse
, “
Controlled multibubble surface cavitation
,”
Phys. Rev. Lett.
96
(
22
),
224501
(
2006
).
55.
N.
Bremond
,
M.
Arora
,
S. M.
Dammer
, and
D.
Lohse
, “
Interaction of cavitation bubbles on a wall
,”
Phys. Fluids
18
(
12
),
121505
(
2006
).
56.
M.
Ida
, “
Multibubble cavitation inception
,”
Phys. Fluids
21
(
11
),
113302
(
2009
).
57.
A.
Vogel
,
S.
Busch
,
K.
Jungnickel
, and
R.
Birngruber
, “
Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses
,”
Lasers Surg. Med.
15
(
1
),
32
43
(
1994
).
58.
C. E.
Brennen
, “
Fission of collapsing cavitation bubbles
,”
J. Fluid Mech.
472
,
153
166
(
2002
).
You do not currently have access to this content.