This work deals with the development of an intelligent inter-particle collision scheme using the Direct Simulation Monte Carlo (DSMC) method. Conventional DSMC collision schemes cannot perceive collision distances by their own routines and, consequently, must rely on other techniques to provide a choice of collision pairs with a smaller inter-particle space. Here, we propose a modification of the Simplified Bernoulli Trials (SBT) scheme, called the Intelligent Simplified Bernoulli Trials (ISBT) scheme, which can create pseudo-circular subcells that reduce approximately 25%–32% of the mean collision separation distance. The ISBT scheme tries to arrange the particle indexing and collision acceptance-rejection of the SBT scheme in a way that leads to the formation of virtual clusters. These inner-cell clusters then will cause the selection of the “near-neighbor” pair, which leads to smaller mean collision separation distances. Different low- and high-speed test cases, e.g., lid-driven cavity flow, steady hypersonic flow over a two-dimensional cylinder, and Mach 15.6 nitrogen flow over a 25°–55° axisymmetric biconic, are selected to assess the accuracy and efficiency of the ISBT collision scheme.

1.
G. A.
Bird
,
Molecular Gas Dynamics
(
Oxford University Press
,
Oxford
,
1976
).
2.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Oxford University Press
,
Oxford
,
1994
).
3.
W.
Wagner
, “
A convergence proof for Bird’s direct simulation Monte Carlo method for the Boltzmann equation
,”
J. Stat. Phys.
66
(
3-4
),
1011
1044
(
1992
).
4.
K.
Koura
, “
Null - collision technique in the direct - simulation Monte Carlo method
,”
Phys. Fluids (1958-1988)
29
(
11
),
3509
3511
(
1986
).
5.
M.
Ivanov
and
S.
Rogasinsky
, “
Theoretical analysis of traditional and modern schemes of the DSMC method
,” in
Proceedings of the 17th Symposium on Rarefied Gas Dynamics
, edited by
A.
Beylich
(
VCH
,
New York
,
1990
), pp.
629
642
.
6.
O. M.
Belotserkovskii
and
V. E.
Yanitskii
, “
The statistical particles-in-cells method for solving rarefied gas dynamics problems
,”
U.S.S.R. Comput. Math. Math. Phys.
15
,
101
114
(
1975
).
7.
V. E.
Yanitskiy
, “
Operator approach to direct simulation Monte Carlo theory in rarefied gas dynamics
,” in
Proceedings of the 17th Symposium on Rarefied Gas Dynamics
, edited by
A.
Beylich
(
VCH
,
New York
,
1990
), pp.
770
777
.
8.
S. K.
Stefanov
, in
Particle Monte Carlo Algorithms with Small Number of Particles in Grid Cells in Numerical Methods and Applications
,
Lecture Notes in Computer Science
edited by
I.
Dimov
(
Springer
,
2011
), Vol.
6046
, pp.
110
117
.
9.
S. K.
Stefanov
, “
On DSMC calculation of rarefied gas flows with small number of particles in cells
,”
J. Sci. Comput.
33
(
2
),
677
702
(
2011
).
10.
A.
Amiri
,
E.
Roohi
,
H.
Niazmand
, and
S.
Stefanov
, “
DSMC simulation of low Knudsen micro/nano flows using small number of particles per cells
,”
J. Heat Transfer
135
(
10
),
01008
(
2013
).
11.
A.
Shoja-Sani
,
E.
Roohi
,
M.
Kahrom
, and
S.
Stefanov
, “
Investigation of rarefied gas flow around NACA 0012 airfoils using DSMC and NS solvers
,”
Eur. J. Mech., B: Fluids
48
,
59
74
(
2014
).
12.
A.
Saadati
and
E.
Roohi
, “
Detailed investigation of flow and thermal field in micro/nano nozzle using simplified Bernouli trial (SBT) collision scheme in DSMC
,”
Aerosp. Sci. Technol.
46
,
236
255
(
2015
).
13.
G. J.
LeBeau
,
K. A.
Boyles
, and
F. E.
Lumpkin
, “
Virtual sub-cells for the direct simulation Monte Carlo method, American Institute of Aeronautics and Astronautics
,” AIAA Paper 2003-1031, 2003.
14.
G. A.
Bird
, “
Direct simulation of high vorticity gas flows
,”
Phys. Fluids
30
,
364
366
(
1987
).
15.
S.
Stefanov
,
I. D.
Boyd
, and
C.-P.
Cai
, “
Monte Carlo analysis of macroscopic fluctuations in a rarefied hypersonic flow around a cylinder
,”
Phys. Fluids
12
,
1226
1239
(
2000
).
16.
S.
Stefanov
,
V.
Roussinov
, and
C.
Cercignani
, “
Rayleigh–Bénard flow of a rarefied gas and its attractors. I. Convection regime
,”
Phys. Fluids
14
,
2255
2269
(
2002
).
17.
G. A.
Bird
, Visual DSMC Program for Two-Dimensional and Axially Symmetric Flows, The DS2V Program User’s Guide, Version 2.1, G.A.B. Consulting Pty Ltd, Sydney, Australia, 2003.
18.
G. A.
Bird
, “
The DS2V/3V program suite for DSMC calculations
,”
AIP Conf. Proc.
762
,
541
546
(
2005
).
19.
C. C.
Su
,
K. C.
Tseng
,
H. M.
Cave
,
J. S.
Wu
,
Y. Y.
Lian
,
T. C.
Kuo
, and
M. C.
Jermy
, “
Implementation of a transient adaptive sub-cell module for the parallel-DSMC code using unstructured grids
,”
Comput. Fluids
39
,
1136
1145
(
2010
).
20.
C. C.
Su
,
J. S.
Wu
,
M. C.
Lo
, and
F. A.
Kuo
, “
Development of parallel direct simulation Monte Carlo method using a cut-cell Cartesian grid on a single graphics processor
,”
Comput. Fluids
101
,
114
125
(
2014
).
21.
J. M.
Burt
,
E.
Josyula
, and
I. D.
Boyd
, “
Novel cartesian implementation of the direct simulation Monte Carlo method
,”
J. Thermophys. Heat Transfer
26
(
2
),
258
270
(
2012
).
22.
A.
Amiri
,
E.
Roohi
,
S.
Stefanov
,
H.
Nami
, and
H.
Niazmand
, “
DSMC simulation of micro/nano flows using SBT-TAS technique
,”
Comput. Fluids
102
,
266
276
(
2014
).
23.
B.
Goshayeshi
,
E.
Roohi
,
S.
Stefanov
, and
J. A.
Esfahani
, “
Extension of the SBT-TAS algorithm to curved boundary geometries
,”
AIP Conf. Proc.
1628
,
266
275
(
2014
).
24.
B.
Goshayeshi
,
E.
Roohi
, and
S.
Stefanov
, “
DSMC simulation of hypersonic flows using an improved SBT-TAS technique
,”
J. Comput. Phys.
303
,
28
(
2015
).
25.
M. A.
Gallis
,
J. R.
Torczynski
,
D. J.
Rader
, and
G. A.
Bird
, “
Convergence behavior of a new DSMC algorithm
,”
J. Comput. Phys.
228
(
12
),
4532
4548
(
2009
).
26.
M. A.
Gallis
and
J. R.
Torczynski
, “
Effect of collision-partner selection schemes on the accuracy and efficiency of the direct simulation Monte Carlo method
,”
Int. J. Numer. Methods Fluids
67
(
8
),
1057
1072
(
2011
).
27.
M. A.
Gallis
,
J. R.
Torczynski
,
D. A.
Levin
,
I. J.
Wysong
, and
A. L.
Garcia
, “
Efficient DSMC collision-partner selection schemes
,”
AIP Conf. Proc.
1333
(
1
),
248
(
2011
).
28.
G. A.
Bird
,
The DSMC Method
(
CreateSpace Independent Publishing
,
Platform, USA
,
2013
).
29.
G. A.
Bird
,
M. A.
Gallis
,
J. R.
Torczynski
, and
D. J.
Rader
, “
Accuracy and efficiency of the sophisticated direct simulation Monte Carlo algorithm for simulating noncontinuum gas flows
,”
Phys. Fluids
21
(
1
),
017103
(
2009
).
30.
M. A.
Gallis
,
J. R.
Torczynski
,
D. J.
Rader
, and
G. A.
Bird
, “
An improved - accuracy DSMC algorithm
,”
AIP Conf. Proc.
1084
(
1
),
299
304
(
2008
).
31.
A. J.
Lofthouse
,
I. D.
Boyd
, and
J. M.
Wright
, “
Effects of continuum breakdown on hypersonic aerothermodynamics
,”
Phys. Fluids
19
,
027105
(
2007
).
32.
C. C.
Su
,
K. C.
Tseng
,
J. S.
Wu
,
H. M.
Cave
,
M. C.
Jermy
, and
Y. Y.
Lian
, “
Two-level virtual mesh refinement algorithm in a parallelized DSMC code using unstructured grids
,”
Comput. Fluids
48
,
113
124
(
2011
).
33.
D.
Knight
, “
RTO WG 10: Test cases for CFD validation of hypersonic flight
,” AIAA Paper 2002-0433, 2003.
34.
M. S.
Holden
,
T. P.
Wadhams
,
G. V.
Candler
, and
J. K.
Harvey
, “
Measurements of regions of low density Laminar shock wave/boundary layer interactions in hypersonic flows and comparison with Navier–Stokes predictions
,” AIAA Paper 2003-1131, 2003.
35.
J. N.
Moss
and
G. A.
Bird
, “
Direct simulation Monte Carlo simulations of hypersonic flows with shock interactions
,”
AIAA J.
43
(
12
),
2565
2573
(
2005
).
36.
G. A.
Bird
, “
Comment on ‘False collisions in the direct simulation Monte Carlo method’ [Phys. Fluids 3 1, 2047 (1988)]
,”
Phys. Fluids A
1
(
5
), 897–897 (
1989
).
37.
S.
Stefanov
and
C.
Cercignani
, “
Monte Carlo simulation of Bénard’s instability in a rarefied gas
,”
Eur. J. Mech., B: Fluids
11
(
5
),
543
554
(
1992
).
38.
E.
Titov
,
J.
Burt
,
E.
Josyula
, and
I.
Nompelis
, “
Implications of slip boundary conditions on surface properties in hypersonic flows
,” AIAA Paper 2012-3307, 2012.
39.
J. K.
Harvey
, “
A review of a validation exercise on the use of the DSMC method to compute viscous/inviscid interactions in hypersonic flow
,” AIAA Paper 2003-3643, 2003.
You do not currently have access to this content.