The globally planar detonation in free space is numerically simulated, with particular interest to understand and quantify the emergence and evolution of the one-dimensional pulsating instability and the two-dimensional cellular structure which is inherently also affected by pulsating instability. It is found that the pulsation includes three stages: rapid decay of the overdrive, approach to the Chapman-Jouguet state and emergence of weak pulsations, and the formation of strong pulsations; while evolution of the cellular structure also exhibits distinct behavior at these three stages: no cell formation, formation of small-scale, irregular cells, and formation of regular cells of a larger scale. Furthermore, the average shock pressure in the detonation front consists of fine-scale oscillations reflecting the collision dynamics of the triple-shock structure and large-scale oscillations affected by the global pulsation. The common stages of evolution between the cellular structure and the pulsating behavior, as well as the existence of shock-front pressure oscillation, suggest highly correlated mechanisms between them. Detonations with period doubling, period quadrupling, and chaotic amplitudes were also observed and studied for progressively increasing activation energies.

1.
J. B.
McVey
and
T. Y.
Toong
, “
Mechanism of instabilities of exothermic hypersonic blunt-body flows
,”
Combust. Sci. Technol.
3
,
63
(
1971
).
2.
R. L.
Alpert
and
T. Y.
Toong
, “
Periodicity in exothermic hypersonic flows about blunt projectiles
,”
Astronautica Acta
17
,
539
(
1972
).
3.
C. K.
Law
,
Combustion Physics
(
Cambridge University Press
,
2006
).
4.
W.
Fickett
and
W. C.
Davis
,
Detonation
(
University of California Press
,
1979
).
5.
J. M.
Austin
, “
The role of instability in gaseous detonation
,” Ph.D. thesis,
California Institute of Technology
, Pasadena, CA,
2003
.
6.
P.
Clavin
and
L.
He
, “
Stability and nonlinear dynamics of one-dimensional overdriven detonations in gases
,”
J. Fluid Mech.
306
,
353
(
1996
).
7.
M.
Short
and
D. S.
Stewart
, “
The multi-dimensional stability of weak-heat-release detonation
,”
J. Fluid Mech.
382
,
109
(
1999
).
8.
L.
He
, “
Theory of weakly unstable multi-dimensional detonation
,”
Combust. Sci. Technol.
160
,
65
(
2000
).
9.
R.
Daou
and
P.
Clavin
, “
Instability threshold of gaseous detonation
,”
J. Fluid Mech.
482
,
181
(
2003
).
10.
H. D.
Ng
, “
The effect of chemical reaction kinetics on the structure of gaseous detonations
,” Ph.D. thesis,
McGill University
, Montreal, Canada,
2005
.
11.
J. H. S.
Lee
,
The Detonation Phenomenon
(
Cambridge University Press
,
2008
).
12.
M. J.
Short
, “
A nonlinear evolution equation for pulsating Chapman–Jouguet detonations with chain-branching kinetics
,”
J. Fluid Mech.
430
,
381
(
2001
).
13.
G. J.
Sharpe
and
S. A. E. G.
Falle
, “
Two-dimensional numerical simulations of idealized detonations
,”
Proc. R. Soc. A
456
,
2081
(
2000
).
14.
M. I.
Radulescu
and
J. H. S.
Lee
, “
The failure mechanism of gaseous detonations: Experiments in porous wall tubes
,”
Combust. Flame
131
,
29
(
2002
).
15.
M.
Short
and
G.
Sharpe
, “
Pulsating instability of detonations with a two-step chain-branching reaction model: Theory and numeric
,”
Combust. Theory Modell.
7
,
401
(
2003
).
16.
G. J.
Sharpe
, “
Linear stability of idealized detonations
,”
Proc. R. Soc. A
453
,
2603
(
1997
).
17.
M.
Short
and
D. S.
Stewart
, “
Cellular detonation stability. Part 1. A normal-mode linear analysis
,”
J. Fluid Mech.
368
,
229
(
1998
).
18.
A.
Bourlioux
and
A. J.
Majda
, “
Theoretical and numerical structure for unstable two-dimensional detonations
,”
Combust. Flame
90
,
211
(
1992
).
19.
D. S.
Stewart
,
T. D.
Aslam
, and
J.
Yao
, “
On the evolution of cellular detonation
,”
Symp. (Int.) Combust.
26
,
2981
(
1996
).
20.
P.
Clavin
, “
Theory of gaseous detonations
,”
Chaos
14
,
825
(
2004
).
21.
V. N.
Gamezo
,
D.
Desbordes
, and
E. S.
Oran
, “
Formation and evolution of two-dimensional cellular detonation
,”
Combust. Flame
116
,
154
(
1999
).
22.
V. N.
Gamezo
,
D.
Desbordes
, and
E. S.
Oran
, “
Two-dimensional reactive flow dynamics in cellular detonation
,”
Shock Waves
9
,
11
(
1999
).
23.
G. J.
Sharpe
, “
Transverse waves in numerical simulations of cellular detonations
,”
J. Fluid Mech.
447
,
31
(
2001
).
24.
M. I.
Radulescu
,
G. J.
Sharpe
,
J. H. S.
Lee
,
C. B.
Kiyanda
,
A. J.
Higgins
, and
R. K.
Hanson
, “
The ignition mechanism in irregular structure gaseous detonations
,”
Proc. Combust. Inst.
30
,
1859
(
2005
).
25.
C. B.
Kiyanda
, “
Photographic study of the structure of irregular detonation waves
,” Masters thesis,
McGill University
, Montreal, Canada,
2005
.
26.
V.
Deledicque
and
M. V.
Papalexandris
, “
Computational study of three-dimensional gaseous detonation structures
,”
Combust. Flame
144
,
821
(
2006
).
27.
Y.
Sugiyama
and
A.
Matsuo
, “
On the characteristics of two-dimensional double cellular detonations with two successive reactions model
,”
Proc. Combust. Inst.
33
,
2227
(
2011
).
28.
C.
Wang
,
C. W.
Shu
,
W. H.
Han
, and
J. G.
Ning
, “
High resolution WENO simulation of 3D detonation waves
,”
Combust. Flame
160
,
447
(
2013
).
29.
Y.
Mahmoudi
,
K.
Mazaheri
, and
S.
Parvar
, “
Hydrodynamic instabilities and transverse waves in propagation mechanism of gaseous detonations
,”
Acta Astronaut.
91
,
263
(
2013
).
30.
R.
Mével
,
D.
Davidenko
,
J. M.
Austin
,
F.
Pintgen
, and
J. E.
Shepherd
, “
Application of a laser induced fluorescence model to the numerical simulation of detonation waves in hydrogen-oxygen-diluent mixtures
,”
Int. J. Hydrogen Energy
39
,
6044
(
2014
).
31.
P.
Clavin
and
B.
Denet
, “
Diamond patterns in the cellular front of an overdriven detonation
,”
Phys. Rev. Lett.
88
,
044502
(
2002
).
32.
P.
Clavin
and
F. A.
Williams
, “
Analytical studies of the dynamics of gaseous detonations
,”
Philos. Trans. R. Soc., A
370
,
597
(
2012
).
33.
G. S.
Jiang
and
C. W.
Shu
, “
Efficient implementation of weighted WENO schemes
,”
J. Comput. Phys.
126
,
202
(
1996
).
34.
C. W.
Shu
and
S.
Osher
, “
Efficient implementation of essentially non-oscillatory shock-capturing schemes
,”
J. Comput. Phys.
77
,
439
(
1988
).
35.
D. S.
Balsara
and
C. W.
Shu
, “
Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy
,”
J. Comput. Phys.
160
,
405
(
2000
).
36.
X.
Zhang
and
C. W.
Shu
, “
Positivity-preserving high order finite difference WENO schemes for compressible Euler equations
,”
J. Comput. Phys.
231
,
2245
(
2012
).
37.
S. D.
Watt
and
G. J.
Sharpe
, “
One-dimensional linear stability of curved detonations
,”
Proc. R. Soc. A
460
,
2551
(
2004
).
38.
M.
Short
,
A. K.
Kapila
, and
J. J.
Quirk
, “
The chemical-gas dynamic mechanisms of pulsating detonation wave instability
,”
Philos. Trans. R. Soc., A
357
,
3621
(
1999
).
39.
A. K.
Henrick
,
T. D.
Aslam
, and
J. M.
Powers
, “
Simulations of pulsating one-dimensional detonations with true fifth order accuracy
,”
J. Comput. Phys.
213
,
311
(
2006
).
40.
J. H. S.
Lee
and
A. J.
Higgins
, “
Comments on criteria for direct initiation of detonation
,”
Philos. Trans. R. Soc., A
357
,
3503
(
1999
).
41.
M.
Nikolic
,
D. N.
Williams
, and
L.
Bauwens
, “
Simulation of detonation cells in wide channels
,” in
Gaseous and Heterogeneous Detonations: Science to Applications
, edited by
G. D.
Roy
,
S. M.
Frolov
,
K.
Kailasanath
, and
N. N.
Smirnov
(
ENAS Publishers Ltd.
,
Moscow
,
1999
), p.
153
.
42.
G. J.
Sharpe
and
S. A. E. G.
Falle
, “
Numerical simulations of pulsating detonation: I. Non-linear stability of steady detonations
,”
Combust. Theory Modell.
4
,
557
(
2000
).
43.
H. D.
Ng
,
A. J.
Higgins
,
C. B.
Kiyanda
,
M. I.
Radulescu
,
J. H. S.
Lee
,
K. R.
Bates
, and
N.
Nikiforakis
, “
Non-linear dynamics and chaos analysis of one-dimensional pulsating detonations
,”
Combust. Theory Modell.
9
,
159
(
2005
).
44.
G. J.
Sharpe
and
M. I.
Radulescu
, “
Statistical analysis of cellular detonation dynamics from numerical simulations: One-step chemistry
,”
Combust. Theory Modell.
15
,
619
(
2011
).
45.
M. I.
Radulescu
,
G. J.
Sharpe
,
C. K.
Law
, and
J. H. S.
Lee
, “
The hydrodynamic structure of unstable cellular detonations
,”
J. Fluid Mech.
580
,
31
(
2007
).
You do not currently have access to this content.