In this work, we examine the turbulence maintained in a Restricted Nonlinear (RNL) model of plane Couette flow. This model is a computationally efficient approximation of the second order statistical state dynamics obtained by partitioning the flow into a streamwise averaged mean flow and perturbations about that mean, a closure referred to herein as the RNL model. The RNL model investigated here employs a single member of the infinite ensemble that comprises the covariance of the RNL dynamics. The RNL system has previously been shown to support self-sustaining turbulence with a mean flow and structural features that are consistent with direct numerical simulations (DNS). Regardless of the number of streamwise Fourier components used in the simulation, the RNL system’s self-sustaining turbulent state is supported by a small number of streamwise varying modes. Remarkably, further truncation of the RNL system’s support to as few as one streamwise varying mode can suffice to sustain the turbulent state. The close correspondence between RNL simulations and DNS that has been previously demonstrated along with the results presented here suggest that the fundamental mechanisms underlying wall-turbulence can be analyzed using these highly simplified RNL systems.

1.
J. L.
Lumley
, “
The structure of inhomogeneous turbulence
,” in
Atmospheric Turbulence and Radio Wave Propagation
, edited by
A. M.
Yaglom
and
V. I.
Tatarskii
(
Nauka
,
Moscow
,
1967
), pp.
166
178
.
2.
T. R.
Smith
,
J.
Moehlis
, and
P.
Holmes
, “
Low-dimensional modelling of turbulence using the proper orthogonal decomposition: A tutorial
,”
Nonlinear Dyn.
41
,
275
307
(
2005
).
3.
B. F.
Farrell
and
P. J.
Ioannou
, “
Accurate low-dimensional approximation of the linear dynamics of fluid flow
,”
J. Atmos. Sci.
58
,
2771
2789
(
2001
).
4.
C.
Rowley
, “
Model reduction for fluids, using balanced proper orthogonal decomposition
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
15
,
997
1013
(
2005
).
5.
C.
Rowley
,
I.
Mezi
,
S.
Bagheri
,
P.
Schlatter
, and
D.
Henningson
, “
Reduced-order models for flow control: Balanced models and Koopman modes
,”
IUTAM Bookseries
18
,
43
50
(
2010
).
6.
J.
Jiménez
and
P.
Moin
, “
The minimal flow unit in near-wall turbulence
,”
J. Fluid Mech.
225
,
213
240
(
1991
).
7.
J. M.
Hamilton
,
J.
Kim
, and
F.
Waleffe
, “
Regeneration mechanisms of near-wall turbulence structures
,”
J. Fluid Mech.
287
,
317
348
(
1995
).
8.
J.
Jiménez
,
G.
Kawahara
,
M. P.
Simens
,
M.
Nagata
, and
M.
Shiba
, “
Characterization of near-wall turbulence in terms of equilibrium and bursting solutions
,”
Phys. Fluids
17
,
015105
(
2005
).
9.
G.
Kawahara
,
M.
Uhlmann
, and
L.
Van Veen
, “
The significance of simple invariant solutions in turbulent flows
,”
Annu. Rev. Fluid Mech.
44
,
203
225
(
2012
).
10.
M.
Nagata
, “
Three-dimensional traveling-wave solutions in plane Couette flow
,”
J. Fluid Mech.
217
,
519
527
(
1990
).
11.
J. F.
Gibson
,
J.
Halcrow
, and
P.
Cvitanović
, “
Equilibrium and travelling-wave solutions of plane Couette flow
,”
J. Fluid Mech.
638
,
243
266
(
2009
).
12.
J.
Moehlis
,
H.
Faisst
, and
B.
Eckhardt
, “
A low-dimensional model for turbulent shear flows
,”
New J. Phys.
6
,
56
(
2004
).
13.
L.
Tuckerman
and
D.
Barkley
, “
Patterns and dynamics in transitional plane Couette flow
,”
Phys. Fluids
23
,
041301
(
2011
).
14.
B. F.
Farrell
and
P. J.
Ioannou
, “
Generalized stability. Part I: Autonomous operators
,”
J. Atmos. Sci.
53
,
2025
2040
(
1996
).
15.
B. F.
Farrell
and
P. J.
Ioannou
, “
Generalized stability. Part II: Non-autonomous operators
,”
J. Atmos. Sci.
53
,
2041
2053
(
1996
).
16.
B. F.
Farrell
, “
Optimal excitation of perturbations in viscous shear flow
,”
Phys. Fluids
31
,
2093
2102
(
1988
).
17.
L. H.
Gustavsson
, “
Energy growth of three-dimensional disturbances in plane Poiseuille flow
,”
J. Fluid Mech.
224
,
241
260
(
1991
).
18.
L. N.
Trefethen
,
A. E.
Trefethen
,
S. C.
Reddy
, and
T. A.
Driscoll
, “
Hydrodynamic stability without eigenvalues
,”
Science
261
,
578
584
(
1993
).
19.
S. C.
Reddy
and
D. S.
Henningson
, “
Energy growth in viscous shear flows
,”
J. Fluid Mech.
252
,
209
238
(
1993
).
20.
B. F.
Farrell
and
P. J.
Ioannou
, “
Stochastic forcing of the linearized Navier–Stokes equations
,”
Phys. Fluids A
5
,
2600
2609
(
1993
).
21.
B.
Bamieh
and
M.
Dahleh
, “
Energy amplification in channel flows with stochastic excitation
,”
Phys. Fluids
13
,
3258
3269
(
2001
).
22.
M. R.
Jovanović
and
B.
Bamieh
, “
Componentwise energy amplification in channel flows
,”
J. Fluid Mech.
534
,
145
183
(
2005
).
23.
K. M.
Butler
and
B. F.
Farrell
, “
Three-dimensional optimal perturbations in viscous shear flows
,”
Phys. Fluids
4
,
1637
1650
(
1992
).
24.
D. S.
Henningson
, “
Comment on “Transition in shear flows. Nonlinear normality versus non-normal linearity” [Phys. Fluids 7, 3060 (1995)]
,”
Phys. Fluids
8
,
2257
2258
(
1996
).
25.
D. S.
Henningson
and
S. C.
Reddy
, “
On the role of linear mechanisms in transition to turbulence
,”
Phys. Fluids
6
,
1396
1398
(
1994
).
26.
K. M.
Butler
and
B. F.
Farrell
, “
Optimal perturbations and streak spacing in turbulent shear flow
,”
Phys. Fluids A
3
,
774
776
(
1993
).
27.
J.
Kim
and
J.
Lim
, “
A linear process in wall bounded turbulent shear flows
,”
Phys. Fluids
12
,
1885
1888
(
2000
).
28.
M. R.
Jovanović
and
B.
Bamieh
, “
Modeling flow statistics using the linearized Navier-Stokes equations
,” in
Proceedings of the 40th IEEE Conference on Decision and Control (Orlando, FL)
(
IEEE
,
New York, NY
,
2001
), Vol.
5
, pp.
4944
4949
.
29.
A.
Zare
,
M. R.
Jovanović
, and
T. T.
Georgiou
, “
Completion of partially known turbulent flow statistics
,” in
Proceedings of the American Control Conference
(
IEEE
,
Portland, OR
,
2014
), pp.
1674
1679
.
30.
B. F.
Farrell
and
P. J.
Ioannou
, “
Perturbation structure and spectra in turbulent channel flow
,”
Theor. Comput. Fluid Dyn.
11
,
215
227
(
1998
).
31.
J. C.
del Álamo
and
J.
Jiménez
, “
Linear energy amplification in turbulent channels
,”
J. Fluid Mech.
559
,
205
213
(
2006
).
32.
Y.
Hwang
and
C.
Cossu
, “
Amplification of coherent structures in the turbulent Couette flow: An input–output analysis at low Reynolds number
,”
J. Fluid Mech.
643
,
333
348
(
2010
).
33.
C.
Cossu
,
G.
Pujals
, and
S.
Depardon
, “
Optimal transient growth and very large scale structures in turbulent boundary layers
,”
J. Fluid Mech.
619
,
79
94
(
2009
).
34.
R.
Moarref
and
M. R.
Jovanović
, “
Model-based design of transverse wall oscillations for turbulent drag reduction
,”
J. Fluid Mech.
707
,
205
240
(
2012
).
35.
B. F.
Farrell
and
P. J.
Ioannou
, “
Structural stability of turbulent jets
,”
J. Atmos. Sci.
60
,
2101
2118
(
2003
).
36.
V.
Thomas
,
B. K.
Lieu
,
M. R.
Jovanović
,
B. F.
Farrell
,
P.
Ioannou
, and
D. F.
Gayme
, “
Self-sustaining turbulence in a restricted nonlinear model of plane Couette flow
,”
Phys. Fluids
26
,
105112
(
2014
).
37.
N. C.
Constantinou
,
A.
Lozano-Durán
,
M.-A.
Nikolaidis
,
B. F.
Farrell
,
P. J.
Ioannou
, and
J.
Jiménez
, “
Turbulence in the highly restricted dynamics of a closure at second order: Comparison with DNS
,”
J. Phys.: Conf. Ser.
506
,
1
18
(
2014
).
38.
J. D.
Swearingen
and
R. F.
Blackwelder
, “
The growth and breakdown of streamwise vortices in the presence of a wall
,”
J. Fluid Mech.
182
,
255
290
(
1987
).
39.
H. P.
Blakewell
and
L.
Lumley
, “
Viscous sublayer and adjacent wall region in turbulent pipe flow
,”
Phys. Fluids
10
,
1880
1889
(
1967
).
40.
J.
Jiménez
, “
Near-wall turbulence
,”
Phys. Fluids
25
,
101302
(
2013
).
41.
W.
Schoppa
and
F.
Hussain
, “
Coherent structure generation in near-wall turbulence
,”
J. Fluid Mech.
453
,
57
108
(
2002
).
42.
F.
Waleffe
, “
On a self-sustaining process in shear flows
,”
Phys. Fluids A
9
,
883
900
(
1997
).
43.
P.
Hall
and
S.
Sherwin
, “
Streamwise vortices in shear flows: Harbingers of transition and the skeleton of coherent structures
,”
J. Fluid Mech.
661
,
178
205
(
2010
).
44.
B. F.
Farrell
and
P. J.
Ioannou
, “
Perturbation growth and structure in time dependent flows
,”
J. Atmos. Sci.
56
,
3622
3639
(
1999
).
45.
B. F.
Farrell
and
P. J.
Ioannou
, “
Dynamics of streamwise rolls and streaks in turbulent wall-bounded shear flow
,”
J. Fluid Mech.
708
,
149
196
(
2012
).
46.
U.
Frisch
,
Turbulence: The Legacy of A. N. Kolmogorov
(
Cambridge University Press
,
1995
).
47.
E.
Hopf
, “
Statistical hydromechanics and functional calculus
,”
J. Ration. Mech. Anal.
1
,
87
123
(
1952
).
48.
J. F.
Gibson
, “
Channelflow: A spectral Navier–Stokes simulator in C++
,”
Technical Report
(
U. New Hampshire
,
2014
) http://www.Channelflow.org.
49.
J. F.
Gibson
,
J.
Halcrow
, and
P.
Cvitanović
, “
Visualizing the geometry of state space in plane Couette flow
,”
J. Fluid Mech.
611
,
107
130
(
2008
), e-print arXiv:0705.3957.
50.
R.
Peyret
,
Spectral Methods for Incompressible Flows
(
Springer-Verlag
,
2002
).
51.
C.
Canuto
,
M.
Hussaini
,
A.
Quateroni
, and
T.
Zhang
,
Spectral Methods in Fluid Dynamics
(
Springer-Verlag
,
1988
).
52.
T. A.
Zang
and
M. Y.
Hussaini
, “
Numerical experiments on subcritical transition mechanism
,” in
AIAA, Aerospace Sciences Meeting, 85-0296
(
Reno
,
NV
,
1985
).
53.
J. U.
Bretheim
,
C.
Meneveau
, and
D. F.
Gayme
, “
Standard logarithmic mean velocity distribution in a band-limited restricted nonlinear model of turbulent flow in a half-channel
,”
Phys. Fluids
27
,
011702
(
2015
).
You do not currently have access to this content.