The importance of secondary instability of streaks for the generation of vortical structures attached to the wall in the logarithmic region of turbulent channels is studied. The streaks and their linear instability are computed by solving equations associated with the organized motion that include an eddy-viscosity modeling the effect of incoherent fluctuations. Three friction Reynolds numbers, Reτ = 2000, 3000, and 5000, are investigated. For all flow cases, optimal streamwise vortices (i.e., having the highest potential for linear transient energy amplification) are used as initial conditions. Due to the lift-up mechanism, these optimal perturbations lead to the nonlinear growth of streaks. Based on a Floquet theory along the spanwise direction, we observe the onset of streak secondary instability for a wide range of spanwise wavelengths when the streak amplitude exceeds a critical value. Under neutral conditions, it is shown that streak instability modes have their energy mainly concentrated in the overlap layer and propagate with a phase velocity equal to the mean streamwise velocity of the log-layer. These neutral log-layer modes exhibit a sinuous pattern and have characteristic sizes that are proportional to the wall distance in both streamwise and spanwise directions, in agreement with the Townsend’s attached eddy hypothesis (A. Townsend, the structure of turbulent shear flow, Cambridge university press, 1976 2nd edition). In particular, for a distance from the wall varying from y+ ≈ 100 (in wall units) to y ≈ 0.3h, where h is half the height of the channel, the neutral log-layer modes are self-similar with a spanwise width of λzy/0.3 and a streamwise length of λx ≈ 3λz, independently of the Reynolds number. Based on this observation, it is suggested that compact vortical structures attached to the wall can be ascribed to streak secondary instabilities. In addition, spatial distributions of fluctuating vorticity components show that the onset of secondary instability is associated with the roll-up of the shear layer at the edge of the low-speed streak, similarly to a three-dimensional mixing layer.

1.
T.
Theodorsen
,
The Structure of Turbulence
(
The Institute for Fluid Dynamics and Applied Mathematics, University of Maryland
,
1954
).
2.
B. J.
Cantwell
, “
Organized motion in turbulent flow
,”
Annu. Rev. Fluid Mech.
13
,
457
515
(
1981
).
3.
R. J.
Adrian
, “
Hairpin vortex organization in wall turbulence
,”
Phys. Fluids
19
,
041301
(
2007
).
4.
S. J.
Kline
,
W. C.
Reynolds
,
F. A.
Schraub
, and
P. W.
Runstadler
, “
The structure of turbulent boundary layers
,”
J. Fluid Mech.
30
,
741
773
(
1967
).
5.
H. T.
Kim
,
S. J.
Kline
, and
W. C.
Reynolds
, “
The production of turbulence near a smooth wall in a turbulent boundary layer
,”
J. Fluid Mech.
50
,
133
160
(
1971
).
6.
A.
Townsend
,
The Structure of Turbulent Shear Flow
, 2nd ed. (
Cambridge University Press
,
1976
).
7.
A. E.
Perry
and
M. S.
Chong
, “
On the mechanism of turbulence
,”
J. Fluid Mech.
119
,
173
217
(
1982
).
8.
A. E.
Perry
,
S.
Henbest
, and
M. S.
Chong
, “
A theoretical and experimental study of wall turbulence
,”
J. Fluid Mech.
165
,
163
199
(
1986
).
9.
I.
Marusic
,
J. P.
Monty
,
M.
Hultmark
, and
A. J.
Smits
, “
On the logarithmic region in wall turbulence
,”
J. Fluid Mech.
716
,
R3-1
R3-11
(
2013
).
10.
T. B.
Nickels
,
I.
Marusic
,
S.
Hafez
, and
M. S.
Chong
, “
Evidence of the k 1 1 law in a high-Reynolds-number turbulent boundary layer
,”
Phys. Rev. Lett.
95
,
074501
(
2005
).
11.
J. A.
Sillero
,
J.
Jiménez
, and
R. D.
Moser
, “
One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to δ+ = 2000
,”
Phys. Fluids
25
,
105102
(
2013
).
12.
M.
Lee
and
R. D.
Moser
, “
Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200
,”
J. Fluid Mech.
774
,
395
415
(
2015
).
13.
O.
Flores
and
J.
Jiménez
, “
Hierarchy of minimal flow units in the logarithmic layer
,”
Phys. Fluids
22
,
071704
(
2010
).
14.
J.
Jiménez
and
P.
Moin
, “
The minimal flow unit in near-wall turbulence
,”
J. Fluid Mech.
225
,
213
240
(
1991
).
15.
J. M.
Hamilton
,
J.
Kim
, and
F.
Waleffe
, “
Regeneration mechanisms of near-wall turbulence structures
,”
J. Fluid Mech.
287
,
317
349
(
1995
).
16.
F.
Waleffe
, “
On a self-sustaining process in shear flows
,”
Phys. Fluids
9
,
883
900
(
1997
).
17.
R. L.
Panton
, “
Overview of the self-sustaining mechanisms of wall turbulence
,”
Prog. Aerosp. Sci.
37
,
341
383
(
2001
).
18.
J.
Kim
and
J.
Lim
, “
A linear process in wall-bounded turbulent shear flows
,”
Phys. Fluids
12
,
1885
(
2000
).
19.
M. T.
Landahl
, “
A note on an algebraic instability of inviscid parallel shear flows
,”
J. Fluid Mech.
98
,
243
251
(
1980
).
20.
P. J.
Schmid
and
D. S.
Henningson
,
Stability and Transition in Shear Flows
(
Springer
,
2001
).
21.
J. C.
del Alamo
and
J.
Jiménez
, “
Linear energy amplification in turbulent channels
,”
J. Fluid Mech.
559
,
205
213
(
2006
).
22.
C.
Cossu
,
G.
Pujals
, and
S.
Depardon
, “
Optimal transient growth and very large-scale structures in turbulent boundary layers
,”
J. Fluid Mech.
619
,
79
94
(
2009
).
23.
G.
Pujals
,
M.
Garci-Villalba
,
C.
Cossu
, and
S.
Depardon
, “
A note on optimal transient growth in turbulent channels flows
,”
Phys. Fluids
21
,
01519
(
2009
).
24.
W. C.
Reynolds
and
K. M. F.
Hussain
, “
The mechanics of an organized wave in turbulence shear flow. Part 3. Theoretical models and comparisons with experiments
,”
J. Fluid Mech.
52
,
263
288
(
1972
).
25.
K. M.
Butler
and
B. F.
Farrel
, “
Optimal perturbations and streak spacing in wall-bounded turbulent shear flow
,”
Phys. Fluids
5
,
774
777
(
1992
).
26.
J.
Jiménez
, “
How linear is wall-bounded turbulence?
,”
Phys. Fluids
25
,
110814
(
2013
).
27.
W.
Schoppa
and
F.
Hussain
, “
Coherent structure generation in near-wall turbulence
,”
J. Fluid Mech.
453
,
57
108
(
2002
).
28.
J.
Jiménez
, “
Cascades in wall-bounded turbulence
,”
Annu. Rev. Fluid Mech.
44
,
27
45
(
2012
).
29.
Y.
Hwang
and
C.
Cossu
, “
Self-sustained processes in the logarithmic layer of turbulent channel flows
,”
Phys. Fluids
23
,
061702
(
2011
).
30.
Y.
Hwang
, “
Statistical structure of self-sustaining attached eddies in turbulent channel flow
,”
J. Fluid Mech.
767
,
254
289
(
2015
).
31.
J. C.
del Alamo
,
J.
Jiménez
,
P.
Zandonade
, and
R. D.
Moser
, “
Self-similar vortex clusters in the turbulent logarithmic region
,”
J. Fluid Mech.
561
,
329
358
(
2006
).
32.
C. D.
Tomkins
and
R. J.
Adrian
, “
Spanwise structure and scale growth in turbulent boundary layers
,”
J. Fluid Mech.
490
,
37
74
(
2003
).
33.
I.
Marusic
and
N.
Hutchins
, “
Study of the log-layer structure in wall turbulence over a very large range of Reynolds number
,”
Flow, Turbul. Combust.
81
,
115
130
(
2008
).
34.
Y.
Hwang
and
C.
Cossu
, “
Linear non-normal energy amplification of harmonic and stochastic forcing in the turbulent channel flow
,”
J. Fluid Mech.
664
,
51
73
(
2010
).
35.
R.
Moarref
,
A. S.
Sharma
,
J. A.
Tropp
, and
B. J.
McKeon
, “
Model-based scaling of the streamwise energy density in high-Reynolds-number turbulent channels
,”
J. Fluid Mech.
734
,
275
316
(
2013
).
36.
F.
Alizard
,
S.
Pirozzoli
,
M.
Bernardini
, and
F.
Grasso
, “
Optimal transient growth in compressible turbulent boundary layers
,”
J. Fluid Mech.
770
,
124
155
(
2015
).
37.
A. S.
Sharma
and
B. J.
McKeon
, “
On coherent structure in wall turbulence
,”
J. Fluid Mech.
728
,
196
238
(
2013
).
38.
J.
Park
,
Y.
Hwang
, and
C.
Cossu
, “
On the stability of large-scale streaks in turbulent Couette and Poiseuille flows
,”
C. R. Méc.
339
,
1
5
(
2011
).
39.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
40.
R. D.
Cess
, “
A survey of the literature on heat transfer in turbulent tube flow
,”
Westinghouse Research Report No. 8-0529-R24
,
1958
.
41.
W. C.
Reynolds
and
W. G.
Tiederman
, “
Stability of turbulent channel flow, with application to Malkus’s theory
,”
J. Fluid Mech.
27
,
253
272
(
1967
).
42.
S.
Hoyas
and
J.
Jiménez
, “
Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003
,”
Phys. Fluids
18
,
011702
(
2006
).
43.
F.
Alizard
,
J.-C.
Robinet
, and
G.
Filliard
, “
Sensitivity of optimal transient growth for turbulent boundary layer
,”
Eur. J. Fluid Mech.
49
,
373
386
(
2015
).
44.
R.
Peyret
,
Spectral Methods for Incompressible Viscous Flow
(
Springer
,
2002
).
45.
R. B.
Lehoucq
,
D. C.
Sorensen
, and
C.
Yang
,
ARPACK User’s Guide: Solution of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods
(
Society for Industrial & Applied Mathematics
,
1997
).
46.
P.
Anderson
,
L.
Brandt
,
A.
Bottaro
, and
D. S.
Henningson
, “
On the breakdown of boundary layer streaks
,”
J. Fluid Mech.
428
,
29
60
(
2001
).
47.
G.
Taylor
, “
The spectrum of turbulence
,”
Proc. R. Soc. A
164
,
476
490
(
1938
).
48.
C.
Cossu
and
L.
Brandt
, “
On Tollmien-Schlichting waves in streaky boundary layers
,”
Eur. J. Fluid Mech.
23
,
815
833
(
2004
).
49.
J. P.
Monty
,
N.
Hutchins
,
H. C. H.
Ng
,
I.
Marusic
, and
M. S.
Chong
, “
A comparison of turbulent pipe, channel and boundary layer flows
,”
J. Fluid Mech.
632
,
431
442
(
2009
).
50.
B. J.
Balakumar
and
R. J.
Adrian
, “
Large- and very-large-scale motions in channel and boundary-layer flows
,”
Philos. Trans. R. Soc., A
365
,
665
681
(
2007
).
51.
W. M. F.
Orr
, “
The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part I: A perfect liquid. Part II: A viscous liquid
,”
Proc. R. Irish Acad. A
27
,
9
68
(
1907
), available at www.jstor.org/stable/20490590.
52.
S.
Pirozzoli
and
M.
Bernardini
, “
Turbulence in supersonic boundary layers at moderate Reynolds number
,”
J. Fluid Mech.
688
,
120
168
(
2011
).
53.
J.
Hoepffner
,
L.
Brandt
, and
D. S.
Henningson
, “
Transient growth on boundary layer streaks
,”
J. Fluid Mech.
537
,
91
100
(
2005
).
54.
M.
Cossu
,
C.
Chevalier
, and
D. S.
Henningson
, “
Optimal secondary energy growth in a plane channel flow
,”
Phys. Fluids
19
,
058107
(
2007
).
55.
C.
Cossu
,
L.
Brandt
,
S.
Bagheri
, and
D. S.
Henningson
, “
Secondary threshold amplitudes for sinuous streak breakdown
,”
Phys. Fluids
23
,
074103
(
2011
).
56.
M. J. P.
Hack
and
T. A.
Zaki
, “
Streaks instabilities in boundary layers beneath free-stream turbulence
,”
J. Fluid Mech.
741
,
280
315
(
2014
).
57.
N. J.
Vaughan
and
T. A.
Zaki
, “
Stability of zero-pressure-gradient boundary layer distorted by unsteady Klebanoff streaks
,”
J. Fluid Mech.
681
,
116
153
(
2011
).
58.
M.
Marquillie
,
U.
Ehrenstein
, and
J. P.
Laval
, “
Instability of streaks in wall turbulence with adverse pressure gradient
,”
J. Fluid Mech.
681
,
205
240
(
2011
).
59.
J.
Lin
,
J. P.
Laval
,
J. M.
Foucaut
, and
M.
Stanislas
, “
Quantitative characterization of coherent structures in the buffer layer of near-wall turbulence
,”
Exp. Fluids
45
,
999
1013
(
2008
).
You do not currently have access to this content.