Cavitation erosion is the consequence of repeated collapse-induced high pressure-loads on a material surface. The present paper assesses the prediction of impact load spectra of cavitating flows, i.e., the rate and intensity distribution of collapse events based on a detailed analysis of flow dynamics. Data are obtained from a numerical simulation which employs a density-based finite volume method, taking into account the compressibility of both phases, and resolves collapse-induced pressure waves. To determine the spectrum of collapse events in the fluid domain, we detect and quantify the collapse of isolated vapor structures. As reference configuration we consider the expansion of a liquid into a radially divergent gap which exhibits unsteady sheet and cloud cavitation. Analysis of simulation data shows that global cavitation dynamics and dominant flow events are well resolved, even though the spatial resolution is too coarse to resolve individual vapor bubbles. The inviscid flow model recovers increasingly fine-scale vapor structures and collapses with increasing resolution. We demonstrate that frequency and intensity of these collapse events scale with grid resolution. Scaling laws based on two reference lengths are introduced for this purpose. We show that upon applying these laws impact load spectra recorded on experimental and numerical pressure sensors agree with each other. Furthermore, correlation between experimental pitting rates and collapse-event rates is found. Locations of high maximum wall pressures and high densities of collapse events near walls obtained numerically agree well with areas of erosion damage in the experiment. The investigation shows that impact load spectra of cavitating flows can be inferred from flow data that captures the main vapor structures and wave dynamics without the need for resolving all flow scales.

1.
C. E.
Brennen
,
Cavitation and Bubble Dynamics
(
Cambridge University Press
,
2013
).
2.
J.-P.
Franc
and
J.-M.
Michel
,
Fundamentals of Cavitation
(
Springer
,
2006
).
3.
R. E.
Arndt
, “
Cavitation in fluid machinery and hydraulic structures
,”
Annu. Rev. Fluid Mech.
13
(
1
),
273
326
(
1981
).
4.
C. E.
Brennen
,
Hydrodynamics of Pumps
(
Concepts ETI, Inc.
,
Norwich
,
1994
).
5.
R. E.
Arndt
, “
Cavitation in vortical flows
,”
Annu. Rev. Fluid Mech.
34
(
1
),
143
175
(
2002
).
6.
C. O.
Iyer
and
S. L.
Ceccio
, “
The influence of developed cavitation on the flow of a turbulent shear layer
,”
Phys. Fluids (1994-present)
14
(
10
),
3414
3431
(
2002
).
7.
T. J.
O’Hern
, “
An experimental investigation of turbulent shear flow cavitation
,”
J. Fluid Mech.
215
,
365
391
(
1990
).
8.
J.-P.
Franc
,
M.
Riondet
,
A.
Karimi
, and
G. L.
Chahine
, “
Impact load measurements in an erosive cavitating flow
,”
J. Fluids Eng.
133
(
12
),
121301
(
2011
).
9.
A.
Jayaprakash
,
J.-K.
Choi
,
G. L.
Chahine
,
F.
Martin
,
M.
Donnelly
,
J.-P.
Franc
, and
A.
Karimi
, “
Scaling study of cavitation pitting from cavitating jets and ultrasonic horns
,”
Wear
296
(
1
),
619
629
(
2012
).
10.
S.
Hattori
,
T.
Hirose
, and
K.
Sugiyama
, “
Prediction method for cavitation erosion based on measurement of bubble collapse impact loads
,”
Wear
269
(
7–8
),
507
514
(
2010
).
11.
A.
Philipp
and
W.
Lauterborn
, “
Cavitation erosion by single laser-produced bubbles
,”
J. Fluid Mech.
361
,
75
116
(
1998
).
12.
M.
Tinguely
,
D.
Obreschkow
,
P.
Kobel
,
N.
Dorsaz
,
A.
De Bosset
, and
M.
Farhat
, “
Energy partition at the collapse of spherical cavitation bubbles
,”
Phys. Rev. E
86
(
4
),
046315
(
2012
).
13.
C. F.
Delale
,
Bubble Dynamics and Shock Waves
(
Springer
,
2012
).
14.
E.
Giannadakis
,
M.
Gavaises
, and
C.
Arcoumanis
, “
Modelling of cavitation in diesel injector nozzles
,”
J. Fluid Mech.
616
,
153
193
(
2008
).
15.
R. E.
Bensow
and
G.
Bark
, “
Implicit LES predictions of the cavitating flow on a propeller
,”
J. Fluids Eng.
132
(
4
),
041302
(
2010
).
16.
S.
Yakubov
,
B.
Cankurt
,
M.
Abdel-Maksoud
, and
T.
Rung
, “
Hybrid MPI/OpenMP parallelization of an Euler–Lagrange approach to cavitation modelling
,”
Comput. Fluids
80
,
365
371
(
2013
).
17.
S. J.
Schmidt
,
I. H.
Sezal
, and
G. H.
Schnerr
, “
Compressible simulation of high-speed hydrodynamics with phase change
,” in
ECCOMAS CFD 2006: Proceedings of the European Conference on Computational Fluid Dynamics
,
Egmond aan Zee, The Netherlands
,
September 5-8, 2006
. edited by
P.
Wesseling
,
E.
Onate
, and
J.
Periaux
(
Delft University of Technology, European Community on Computational Methods in Applied Sciences (ECCOMAS)
,
2006
).
18.
G. H.
Schnerr
,
I. H.
Sezal
, and
S. J.
Schmidt
, “
Numerical investigation of three-dimensional cloud cavitation with special emphasis on collapse induced shock dynamics
,”
Phys. Fluids (1994-present)
20
(
4
),
040703
(
2008
).
19.
S.
Schmidt
,
G.
Schnerr
, and
M.
Thalhamer
, “
Inertia controlled instability and small scale structures of sheet and cloud cavitation
,” in
Proceedings of the 7th International Symposium on Cavitation - CAV2009
,
Ann Arbor, Michigan, USA
edited by
S.
Ceccio
(
Curran Associates, Inc.
,
2011
).
20.
E. F.
Toro
,
Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction
(
Springer Science & Business Media
,
2009
).
21.
S.
Schmidt
,
I.
Sezal
,
G.
Schnerr
, and
T.
Matthias
, “Riemann techniques for the simulation of compressible liquid flows with phase-transistion at all Mach numbers - shock and wave dynamics in cavitating 3-D micro and macro systems,” AIAA Paper 2008-1238, 2008.
22.
B.
Koren
,
A Robust Upwind Discretization Method for Advection, Diffusion and Source Terms
(
Centrum voor Wiskunde en Informatica
,
Amsterdam
,
1993
).
23.
R.
Saurel
,
P.
Cocchi
, and
P. B.
Butler
, “
Numerical study of cavitation in the wake of a hypervelocity underwater projectile
,”
J. Propul. Power
15
(
4
),
513
522
(
1999
).
24.
See http://www.iapws.org/ for the International Association for the Properties of Water and Steam (IAPWS).
25.
J.
Steller
,
A.
Krella
,
J.
Koronowicz
, and
W.
Janicki
, “
Towards quantitative assessment of material resistance to cavitation erosion
,”
Wear
258
(
1–4
),
604
613
(
2005
).
26.
R. F.
Patella
,
J.-L.
Reboud
, and
A.
Archer
, “
Cavitation damage measurement by 3D laser profilometry
,”
Wear
246
(
1–2
),
59
67
(
2000
).
27.
J.-P.
Franc
, “
Incubation time and cavitation erosion rate of work-hardening materials
,”
J. Fluids Eng.
131
(
2
),
021303
(
2009
).
28.
N. A.
Adams
and
S. J.
Schmidt
, “
Shocks in cavitating flows
,” in
Bubble Dynamics and Shock Waves
(
Springer
,
2013
), pp.
235
256
.
29.
M. S.
Mihatsch
,
S. J.
Schmidt
,
M.
Thalhamer
, and
N. A.
Adams
, “
Numerical prediction of erosive collapse events in unsteady compressible cavitating flows
,” in
MARINE 2011, IV International Conference on Computational Methods in Marine Engineering
(
Springer
,
2013
), pp.
187
198
.
30.
S. J.
Schmidt
,
M. S.
Mihatsch
,
M.
Thalhamer
, and
N. A.
Adams
, “
Assessment of erosion sensitive areas via compressible simulation of unsteady cavitating flows
,” in
Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction
(
Springer
,
2014
), pp.
329
344
.
31.
G. B.
Whitham
,
Linear and Nonlinear Waves
(
John Wiley & Sons
,
2011
).
32.
M.
Gavaises
,
F.
Villa
,
P.
Koukouvinis
,
M.
Marengo
, and
J.-P.
Franc
, “
Visualisation and les simulation of cavitation cloud formation and collapse in an axisymmetric geometry
,”
Int. J. Multiphase Flow
68
,
14
26
(
2015
).
33.
C. P.
Egerer
,
S.
Hickel
,
S. J.
Schmidt
, and
N. A.
Adams
, “
Large-eddy simulation of turbulent cavitating flow in a micro channel
,”
Phys. Fluids (1994-present)
26
(
8
),
085102
(
2014
).
34.
M.
Lee
,
S.
Hong
,
G.
Kim
,
K.
Kim
,
C.
Rhee
, and
W.
Kim
, “
Numerical correlation of the cavitation bubble collapse load and frequency with the pitting damage of flame quenched Cu–9Al–4.5 Ni–4.5 Fe alloy
,”
Mater. Sci. Eng.: A
425
(
1
),
15
21
(
2006
).
35.
T.
Momma
and
A.
Lichtarowicz
, “
A study of pressures and erosion produced by collapsing cavitation
,”
Wear
186
,
425
436
(
1995
).
36.
J.-P.
Franc
,
M.
Riondet
,
A.
Karimi
, and
G. L.
Chahine
, “
Material and velocity effects on cavitation erosion pitting
,”
Wear
274
,
248
259
(
2012
).
37.
F.
Ghasempour
,
R.
Andersson
, and
B.
Andersson
, “
Multidimensional turbulence spectra–statistical analysis of turbulent vortices
,”
Appl. Math. Modell.
38
(
17
),
4226
4237
(
2014
).
38.
T.
Hibiki
and
M.
Ishii
, “
One-group interfacial area transport of bubbly flows in vertical round tubes
,”
Int. J. Heat Mass Transfer
43
(
15
),
2711
2726
(
2000
).
39.
F.
Ghasempour
,
R.
Andersson
,
B.
Andersson
, and
D. J.
Bergstrom
, “
Number density of turbulent vortices in the entire energy spectrum
,”
AIChE J.
60
(
11
),
3989
3995
(
2014
).
40.
F.
Higuera
, “
Axisymmetric inviscid interaction of a bubble and a vortex ring
,”
Phys. Fluids (1994-present)
16
(
4
),
1156
1159
(
2004
).
41.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
You do not currently have access to this content.