The interactions between flexible plates and fluids are important physical phenomena. A flag in wind is one of the most simplified and classical models for studying the problem. In this paper, we investigated the response of a flag in flow with an externally forced vibration by using flexible filaments and soap film. Experiments show that for a filament that is either in oscillation or stationary, the external forced vibration leads to its oscillation. A synchronization phenomenon occurs in the experiments. A small perturbation leads to a large response of flapping amplitude in response. The insight provided here is helpful to the applications in the flow control, energy harvesting, and bionic propulsion areas.

1.
J.
Zhang
,
S.
Childress
,
A.
Libchaber
, and
M.
Shelley
, “
Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind
,”
Nature
408
,
835
(
2000
).
2.
L.
Huang
, “
Flutter of cantilevered plates in axial flow
,”
J. Fluids Struct.
9
,
127
(
1995
).
3.
Y.
Watanabe
,
S.
Suzuki
,
M.
Sugihara
, and
Y.
Sueoka
, “
An experimental study of paper flutter
,”
J. Fluids Struct.
16
,
529
(
2002
).
4.
J. J.
Allen
and
A. J.
Smits
, “
Energy harvesting ell
,”
J. Fluids Struct.
15
,
629
(
2001
).
5.
S.
Michelin
and
O.
Doaré
, “
Energy harvesting efficiency of piezoelectric flags in axial flows
,”
J. Fluid Mech.
714
,
489
(
2013
).
6.
M. J.
Shelley
and
J.
Zhang
, “
Flapping and bending bodies interacting with fluid flows
,”
Annu. Rev. Fluid Mech.
43
,
449
(
2011
).
7.
M.
Shelley
,
N.
Vandenberghe
, and
J.
Zhang
, “
Heavy flags undergo spontaneous oscillations in flowing water
,”
Phys. Rev. Lett.
94
,
094302
(
2005
).
8.
M.
Chen
,
L.
Jia
,
Y.
Wu
,
X.
Yin
, and
Y.
Ma
, “
Bifurcation and chaos of a flag in an inviscid flow
,”
J. Fluids Struct.
45
,
124
(
2014
).
9.
B. S. H.
Connell
and
D. K. P.
Yue
, “
Flapping dynamics of a flag in a uniform stream
,”
J. Fluid Mech.
581
,
33
(
2007
).
10.
M.
Argentina
and
L.
Mahadevan
, “
Fluid-flow-induced flutter of a flag
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
1829
(
2005
).
11.
T.
Theodorsen
, “
General theory of aerodynamic instability and the mechanism of flutter
,”
NACA Report No. 496 Technical Report
,
National Advisory Committee for Aeronautics
,
1935
.
12.
S.
Alben
, “
Optimal flexibility of a flapping appendage in an inviscid fluid
,”
J. Fluid Mech.
614
,
355
(
2008
).
13.
S.
Michelin
and
S. G. L.
Smith
, “
Resonance and propulsion performance of a heaving flexible wing
,”
Phys. Fluids
21
,
071902
(
2009
).
14.
A.
Manela
, “
Vibration and sound of an elastic wing actuated at its leading edge
,”
J. Sound Vib.
331
,
638
(
2012
).
15.
R. F. A.
Castro
,
L.
Guillamot
,
A.
Cros
, and
C.
Eloy
, “
Non-linear effects on the resonant frequencies of a cantilevered plate
,”
J. Fluids Struct.
46
,
165
(
2014
).
16.
S.
Alben
,
C.
Witt
,
T. V.
Baker
,
E.
Anderson
, and
G. V.
Lauder
, “
Dynamics of freely swimming flexible foils
,”
Phys. Fluids
24
,
051901
(
2012
).
17.
S.
Ramananarivo
,
R.
Godoy-Diana
, and
B.
Thiria
, “
Passive elastic mechanism to mimic fish-muscle action in anguilliform swimming
,”
J. R. Soc., Interface
10
,
20130667
(
2013
).
18.
C. H. K.
Williamson
and
R.
Govardhan
, “
Vortex-induced vibrations
,”
Annu. Rev. Fluid Mech.
36
,
413
(
2004
).
19.
C. H. K.
Williamson
and
R.
Govardhan
, “
A brief review of recent results in vortex-induced vibrations
,”
J. Wind Eng. Ind. Aerodyn.
96
,
713
(
2008
).
20.
E.
De Langre
, “
Frequency lock-in is caused by coupled-mode flutter
,”
J. Fluids Struct.
22
,
783
(
2006
).
21.
R.
Gopalkrishnan
, “
Vortex-induced forces on oscillating bluff cylinders
,” Ph.D. thesis, Massachusetts Institute of Technology, 1993.
22.
J.
Carberry
,
J.
Sheridan
, and
D.
Rockwell
, “
Forces and wake modes of an oscillating cylinder
,”
J. Fluids Struct.
15
,
523
(
2001
).
23.
T. L.
Morse
and
C. H. K.
Williamson
, “
Prediction of vortex-induced vibration response by employing controlled motion
,”
J. Fluid Mech.
634
,
5
(
2009
).
24.
G. E.
Karniadakis
and
G. S.
Triantafyllou
, “
Frequency selection and asymptotic states in laminar wakes
,”
J. Fluid Mech.
199
,
441
(
1989
).
25.
J.
Carberry
,
R.
Govardhan
,
J.
Sheridan
,
D.
Rockwell
, and
C.
Williamson
, “
Wake states and response branches of forced and freely oscillating cylinders
,”
Eur. J. Mech., B: Fluids
23
,
89
(
2004
).
26.
T. L.
Morse
and
C. H. K.
Williamson
, “
Employing controlled vibrations to predict fluid forces on a cylinder undergoing vortex-induced vibration
,”
J. Fluids Struct.
22
,
877
(
2006
).
27.
M. A.
Rutgers
,
X. L.
Wu
, and
W. B.
Daniel
, “
Conducting fluid dynamics experiments with vertically falling soap films
,”
Rev. Sci. Instrum.
72
,
3025
(
2001
).
28.
L.
Jia
,
The Interaction Between Flexible Plates and Fluid in Two-dimensional Flow
(
Springer
,
2014
).
29.
C.
Marais
,
R.
Godoy-Diana
,
D.
Barkley
, and
J. E.
Wesfreid
, “
Convective instability in inhomogeneous media: Impulse response in the subcritical cylinder wake
,”
Phys. Fluids
23
,
014104
(
2011
).
30.
J.
Wu
, “
Theory for aerodynamic force and moment in viscous flows
,”
AIAA J.
19
,
432
(
1981
).
You do not currently have access to this content.