A simple model for the formation of ocean eddies by flow separation from sharply curved horizontal boundary topography is developed. This is based on the Brown–Michael model for two-dimensional vortex shedding, which is adapted to more realistically model mesoscale oceanic flow by including a deforming free surface. With a free surface, the streamfunction for the flow is not harmonic so the conformal mapping methods used in the standard Brown–Michael approach cannot be used and the problem must be solved numerically. A numerical scheme is developed based on a Chebyshev spectral method for the streamfunction partial differential equation and a second order implicit timestepping scheme for the vortex position ordinary differntial equations. This method is used to compute shed vortex trajectories for three background flows: (A) a steady flow around a semi-infinite plate, (B) a free vortex moving around a semi-infinite plate, and (C) a free vortex moving around a right-angled wedge. In (A), the inclusion of surface deformation dramatically slows the vortex and changes its trajectory from a straight path to a curved one. In (B) and (C), without the inclusion of flow separation, free vortices traverse fully around the tip along symmetrical trajectories. With the effects of flow separation included, very different trajectories are found: for all values of the model parameter—the Rossby radius—the free and shed vortices pair up and move off to infinity without passing around the tip. Their final propagation angle depends strongly and monotonically on the Rossby radius.

1.
K.
Jochumsen
,
M.
Rhein
,
S.
Hüttl-Kabus
, and
C. W.
Böning
, “
On the propagation and decay of North Brazil current rings
,”
J. Geophys. Res., [Oceans]
115
,
C10004
, doi:10.1029/2009JC006042 (
2010
).
2.
H. L.
Simmons
and
D.
Nof
, “
The squeezing of eddies through gaps
,”
J. Phys. Oceanogr.
32
,
314
335
(
2002
).
3.
C.
Cenedese
, “
Laboratory experiments on mesoscale vortices interacting with two islands
,”
J. Geophys. Res., [Oceans]
110
,
C09023
, doi:10.1029/2004JC002734 (
2005
).
4.
M.
Duran-Matute
and
O. U. V.
Fuentes
, “
Passage of a barotropic vortex through a gap
,”
J. Phys. Oceanogr.
38
,
2817
2831
(
2008
).
5.
P.
Richardson
,
A.
Bower
, and
W.
Zenk
, “
A census of Meddies tracked by floats
,”
Prog. Oceanogr.
45
,
209
250
(
2000
).
6.
E. R.
Johnson
and
N. R.
McDonald
, “
The motion of a vortex near two circular cylinders
,”
Proc. R. Soc. A
461
,
939
954
(
2004
).
7.
E. R.
Johnson
and
N. R.
McDonald
, “
The motion of a vortex near a gap in a wall
,”
Phys. Fluids
16
,
462
469
(
2004
).
8.
E. R.
Johnson
and
N. R.
McDonald
, “
The point island approximation in vortex dynamics
,”
Geophys. Astrophys. Fluid Dyn.
99
,
49
60
(
2005
).
9.
E. R.
Johnson
and
N. R.
McDonald
, “
Vortices near barriers with multiple gaps
,”
J. Fluid Mech.
531
,
335
358
(
2005
).
10.
D. G.
Crowdy
and
J. S.
Marshall
, “
Analytical formulae for the Kirchhoff–Routh path function in multiply connected domains
,”
Proc. R. Soc. A
461
,
2477
2501
(
2005
).
11.
D. G.
Crowdy
and
J. S.
Marshall
, “
The motion of a point vortex around multiple circular islands
,”
Phys. Fluids
17
,
056602
(
2005
).
12.
D. G.
Crowdy
and
J. S.
Marshall
, “
The motion of a point vortex through gaps in walls
,”
J. Fluid Mech.
551
,
31
(
2006
).
13.
R. B.
Nelson
and
N. R.
McDonald
, “
Finite area vortex motion on a sphere with impenetrable boundaries
,”
Phys. Fluids
21
,
016602
(
2009
).
14.
R. S.
Nilawar
,
E. R.
Johnson
, and
N. R.
McDonald
, “
Finite Rossby radius effects on vortex motion near a gap
,”
Phys. Fluids
24
,
066601
(
2012
).
15.
M.
Piedeleu
,
P.
Sangrà
,
A.
Sánchez-Vidal
,
J.
Fabrés
,
C.
Gordo
, and
A.
Calafat
, “
An observational study of oceanic eddy generation mechanisms by tall deep-water islands (Gran Canaria)
,”
Geophys. Res. Lett.
36
,
L14605
, doi: 10.1029/2008GL037010 (
2009
).
16.
O.
Isoguchi
,
M.
Shimada
,
F.
Sakaida
, and
H.
Kawamura
, “
Investigation of Kuroshio-induced cold-core eddy trains in the lee of the Izu Islands using high-resolution satellite images and numerical simulations
,”
Remote Sens. Environ.
113
,
1912
1925
(
2009
).
17.
M.
Jiang
,
M.
Zhou
,
S. P.
Libby
, and
D. M.
Anderson
, “
Dynamics of a mesoscale eddy off Cape Ann, Massachusetts in May 2005
,”
Deep Sea Res., Part I
58
,
1130
1146
(
2011
).
18.
T.
Takikawa
,
G.
Onitsuka
,
K.-i.
Fukudome
,
J.-H.
Yoon
,
A.
Morimoto
,
M.
Moku
, and
A.
Watanabe
, “
Spatial and temporal variation of a cyclonic eddy detected downstream of the Tsushima Islands in November 2007
,”
Estuaries Coasts
34
,
775
784
(
2011
).
19.
K. J.
Heywood
,
D. P.
Stevens
, and
G. R.
Bigg
, “
Eddy formation behind the tropical island of Aldabra
,”
Deep Sea Res., Part I
43
,
555
578
(
1996
).
20.
I.
Andrade
,
P.
Sangrà
,
S.
Hormazabal
, and
M.
Correa-Ramirez
, “
Island mass effect in the Juan Fernández Archipelago (33S), Southeastern Pacific
,”
Deep Sea Res., Part I
84
,
86
99
(
2014
).
21.
B.
Jiménez
,
P.
Sangrà
, and
E.
Mason
, “
A numerical study of the relative importance of wind and topographic forcing on oceanic eddy shedding by tall, deep water islands
,”
Ocean Modell.
22
,
146
157
(
2008
).
22.
S.
Teinturier
,
A.
Stegner
,
H.
Didelle
, and
S.
Viboud
, “
Small-scale instabilities of an island wake flow in a rotating shallow-water layer
,”
Dyn. Atmos. Oceans
49
,
1
24
(
2010
).
23.
R. M. A.
Caldeira
and
P.
Sangrà
, “
Complex geophysical wake flows
,”
Ocean Dyn.
62
,
683
700
(
2012
).
24.
C. E.
Brown
and
W. H.
Michael
, “
Effect of leading-edge separation on the lift of a delta wing
,”
J. Aerosp. Sci.
21
,
690
(
1954
).
25.
R.
Krasny
, “
Desingularization of periodic vortex sheet roll-up
,”
J. Comput. Phys.
65
,
292
313
(
1986
).
26.
J. M. R.
Graham
, “
The lift on an aerofoil in starting flow
,”
J. Fluid Mech.
133
,
413
(
1983
).
27.
S.
Michelin
,
S. G. L.
Smith
, and
B. J.
Glover
, “
Vortex shedding model of a flapping flag
,”
J. Fluid Mech.
617
,
1
10
(
2008
).
28.
S.
Michelin
and
S. G. L.
Smith
, “
An unsteady point vortex method for coupled fluid solid problems
,”
Theor. Comput. Fluid Dyn.
23
,
127
153
(
2009
).
29.
S.
Michelin
and
S. G. L.
Smith
, “
Falling cards and flapping flags: Understanding fluid solid interactions using an unsteady point vortex model
,”
Theor. Comput. Fluid Dyn.
24
,
195
200
(
2010
).
30.
J. X.
Sheng
,
A.
Ysasi
,
D.
Kolomenskiy
,
E.
Kanso
,
M.
Nitsche
, and
K.
Schneider
, “
Simulating vortex wakes of flapping plates
,”
IMA Volume on Natural Locomotion in Fluids and on Surfaces: Swimming, Flying, and Sliding
(
Springer
,
2012
), Vol. 155, pp. 255–262.
31.
J.
Eldredge
and
C.
Wang
, “
High-fidelity simulations and low-order modeling of a rapidly pitching plate
,”
AIAA Paper 2010-4281, 40th AIAA Fluid Dynamics Conference
,
2010
.
32.
L.
Cortelezzi
, “
On the unsteady separated flow past a semi-infinite plate: Exact solution of the Brown and Michael model, scaling, and universality
,”
Phys. Fluids
7
,
526
(
1995
).
33.
M. S.
Howe
, “
Emendation of the Brown and Michael equation, with application to sound generation by vortex motion near a half-plane
,”
J. Fluid Mech.
329
,
89
101
(
1996
).
34.
J.
Pedlosky
,
Geophysical Fluid Dynamics
(
Springer-Verlag
,
Berlin
,
1987
), pp.
86
93
.
35.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
Cambridge
,
1967
), pp.
404
407
.
36.
C. G.
Broyden
, “
A class of methods for solving nonlinear simultaneous equations
,”
Math. Comput.
19
,
577
577
(
1965
).
37.
J.
Dormand
and
P.
Prince
, “
A family of embedded Runge–Kutta formulae
,”
J. Comput. Appl. Math.
6
,
19
26
(
1980
).
38.
P. G.
Saffman
,
Vortex Dynamics
(
Cambridge University Press
,
Cambridge
,
1992
), pp.
126
127
.
You do not currently have access to this content.