We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale

$R=\sqrt{\mu _0/p_0}\,I/(2\,\pi )$
$R=μ0/p0I/(2π)$ where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at rR, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then slows the shock Mach number growth producing a maximum followed by monotonic reduction towards magnetosonic conditions, even as the shock accelerates toward the axis. A parameter space of initial shock Mach number at a given radius is explored and the implications of the present results for inertial confinement fusion are discussed.

1.
J. D.
Lindl
,
R. L.
McCrory
, and
E. M.
Campbell
, “
Progress toward ignition and burn propagation in inertial confinement fusion
,”
Phys. Today
45
(
9
),
32
(
1992
).
2.
R.
Betti
,
P. Y.
Chang
,
B. K.
Spears
,
K. S.
Anderson
,
J.
Edwards
,
M.
,
J. D.
Lindl
,
R. L.
McCrory
,
R.
Nora
, and
D.
Shvarts
, “
Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinementa)
,”
Phys. Plasmas
17
(
5
),
058102
(
2010
).
3.
G.
Guderley
, “
Starke kugelige und zylindrische Verdichtungsstösse in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse
,”
Luftfahrtforschung
19
,
302
312
(
1942
).
4.
D. S.
Butler
, “
Converging spherical and cylindrical shocks
,”
Armament Res. Estab. Rep.
54
,
54
(
1954
).
5.
R. F.
Chisnell
, “
The motion of a shock wave in a channel, with applications to cylindrical and spherical shock waves
,”
J. Fluid Mech.
2
(
03
),
286
298
(
1957
).
6.
G. B.
Whitham
, “
A new approach to problems of shock dynamics. Part 1. Two-dimensional problems
,”
J. Fluid Mech.
2
(
02
),
145
171
(
1957
).
7.
G. B.
Whitham
, “
A new approach to problems of shock dynamics. Part 2. three-dimensional problems
,”
J. Fluid Mech.
5
(
03
),
369
386
(
1959
).
8.
G. B.
Whitham
,
Linear and Nonlinear Waves
(
John Wiley & Sons
,
2011
).
9.
J. E.
Cates
and
B.
Sturtevant
, “
Shock wave focusing using geometrical shock dynamics
,”
Phys. Fluids (1994-present)
9
(
10
),
3058
3068
(
1997
).
10.
W. D.
Henshaw
,
N. F.
Smyth
, and
D. W.
Schwendeman
, “
Numerical shock propagation using geometrical shock dynamics
,”
J. Fluid Mech.
171
,
519
545
(
1986
).
11.
C. J.
Catherasoo
and
B.
Sturtevant
, “
Shock dynamics in non-uniform media
,”
J. Fluid Mech.
127
,
539
561
(
1983
).
12.
N. F.
Ponchaut
,
H. G.
Hornung
,
D. I.
Pullin
, and
C. A.
Mouton
, “
On imploding cylindrical and spherical shock waves in a perfect gas
,”
J. Fluid Mech.
560
,
103
122
(
2006
).
13.
H. G.
Hornung
,
D. I.
Pullin
, and
N. F.
Ponchaut
, “
On the question of universality of imploding shock waves
,”
Acta Mech.
201
(
1–4
),
31
35
(
2008
).
14.
R. D.
Richtmyer
, “
Taylor instability in shock acceleration of compressible fluids
,”
Commun. Pure Appl. Math.
13
(
2
),
297
319
(
1960
).
15.
E. E.
Meshkov
, “
Instability of the interface of two gases accelerated by a shock wave
,”
Fluid Dyn.
4
(
5
),
101
104
(
1969
).
16.
R.
Samtaney
, “
Suppression of the Richtmyer–Meshkov instability in the presence of a magnetic field
,”
Phys. Fluids (1994-present)
15
(
8
),
L53
L56
(
2003
).
17.
V.
Wheatley
,
R.
Samtaney
, and
D. I.
Pullin
, “
The Richtmyer–Meshkov instability in magnetohydrodynamics
,”
Phys. Fluids (1994-present)
21
(
8
),
082102
(
2009
).
18.
H.
Hohenberger
,
P. Y.
Chang
,
G.
Fiskel
,
J. P.
Knauer
,
R.
Betti
,
F. J.
Marshall
,
D. D.
Meyerhofer
,
F. H.
Séguin
, and
R. D.
Petrasso
, “
Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA Laser
,”
Phys. Plasmas
19
,
056306
(
2012
).
19.
G. B.
Whitham
, “
On the propagation of shock waves through regions of non-uniform area or flow
,”
J. Fluid Mech.
4
(
04
),
337
360
(
1958
).
20.
R. M.
Gundersen
, “
The propagation of non-uniform magnetohydrodynamic shocks, with special reference to cylindrical and spherical shock waves
,”
Arch. Ration. Mech. Anal.
11
(
1
),
1
15
(
1962
).
21.
M. A.
Liberman
and
A. L.
Velikovich
, “
Self-similar motions in z-pinch dynamics
,”
Nucl. Fusion
26
(
6
),
709
(
1986
).
22.
A. L.
Velikovich
,
J. L.
Giuliani
,
S. T.
Zalesak
,
J. W.
Thornhill
, and
T. A.
Gardiner
, “
Exact self-similar solutions for the magnetized Noh z pinch problem
,”
Phys. Plasmas (1994-present)
19
(
1
),
012707
(
2012
).
23.
R.
Samtaney
,
P.
Colella
,
T. J.
Ligocki
,
D. F.
Martin
, and
S. C.
Jardin
, “
An adaptive mesh semi-implicit conservative unsplit method for resistive MHD
,”
J. Phys.: Conf. Ser.
16
,
40
(
2005
).
24.
K. G.
Powell
,
P. L.
Roe
,
T. J.
Linde
,
T. I.
Gombosi
, and
D. L.
De Zeeuw
, “
A solution-adaptive upwind scheme for ideal magnetohydrodynamics
,”
J. Comput. Phys.
154
(
2
),
284
309
(
1999
).
25.
V.
Wheatley
,
D. I.
Pullin
, and
R.
Samtaney
, “
Regular shock refraction at an oblique planar density interface in magnetohydrodynamics
,”
J. Fluid Mech.
522
,
179
214
(
2005
).
26.
V.
Wheatley
,
R.
Samtaney
,
D. I.
Pullin
, and
R. M.
Gehre
, “
The transverse field Richtmyer-Meshkov instability in magnetohydrodynamics
,”
Phys. Fluids
26
(
1
),
016102
(
2014
).
27.
M. J.
Goldsworthy
and
D. I.
Pullin
, “
Mean free path effects in the shock-implosion problem
,”
Phys. Fluids (1994-present)
21
(
2
),
026101
(
2009
).