The dynamics of vortex ring pairs in the homogeneous nonlinear Schrödinger equation is studied. The generation of numerically exact solutions of traveling vortex rings is described and their translational velocity compared to revised analytic approximations. The scattering behavior of co-axial vortex rings with opposite charge undergoing collision is numerically investigated for different scattering angles yielding a surprisingly simple result for its dependence as a function of the initial vortex ring parameters. We also study the leapfrogging behavior of co-axial rings with equal charge and compare it with the dynamics stemming from a modified version of the reduced equations of motion from a classical fluid model derived using the Biot-Savart law.

1.
C.
Sulem
and
P. L.
Sulem
,
The Nonlinear Schrödinger Equation
(
Springer-Verlag
,
New York
,
1999
).
2.
R. K.
Dodd
,
J. C.
Eilbeck
,
J. D.
Gibbon
, and
H. C.
Morris
,
Solitons and Nonlinear Wave Equations
(
Academic
,
New York
,
1983
).
3.
L.
Debnath
,
Nonlinear Partial Differential Equations for Scientists and Engineers
(
Birkhauser
,
Boston
,
2005
).
4.
A.
Hasegawa
,
Optical Solitons in Fibers
(
Springer-Verlag
,
Heidelberg
,
1990
).
5.
A. Kh.
Abdullaev
,
S. A.
Darmanyan
, and
P. K.
Khabibullaev
,
Solitons in Optical Communications
(
Springer-Verlag
,
Heidelberg
,
1993
).
6.
A.
Hasegawa
and
Y.
Kodama
,
Solitons in Optical Communications
(
Clarendon Press
,
Oxford
,
1993
).
7.
Yu. S.
Kivshar
and
G. P.
Agrawal
,
Optical Solitons: From Fibers to Photonic Crystals
(
Academic Press
,
2003
).
8.
E.
Infeld
and
G.
Rowlands
,
Nonlinear Waves, Solitons and Chaos
(
Cambridge University Press
,
Cambridge
,
1990
).
9.
P. G.
Kevrekidis
,
D. J.
Frantzeskakis
, and
R.
Carretero-González
,
Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment
,
Springer Series on Atomic, Optical, and Plasma Physics
Vol.
45
(
Springer-Verlag
,
2008
).
10.
R.
Carretero-González
,
D. J.
Frantzeskakis
, and
P. G.
Kevrekidis
, “
Nonlinear waves in Bose-Einstein condensates: Physical relevance and mathematical techniques
,”
Nonlinearity
21
,
R139
R202
(
2008
).
11.
M. J.
Ablowitz
,
B.
Prinari
, and
A. D.
Trubatch
,
Discrete and Continuous Nonlinear Schrödinger Systems
(
Cambridge University Press
,
Cambridge
,
2004
).
12.
J.
Bourgain
,
Global Solutions of Nonlinear Schrödinger Equations
(
American Mathematical Society
,
Providence
,
1999
).
13.
M. J.
Ablowitz
and
H.
Segur
,
Solitons and the Inverse Scattering Transform
(
SIAM
,
Philadelphia
,
1981
).
14.
V. E.
Zakharov
,
S. V.
Manakov
,
S. P.
Nonikov
, and
L. P.
Pitaevskii
,
Theory of Solitons
(
Consultants Bureau
,
New York
,
1984
).
15.
A. C.
Newell
,
Solitons in Mathematics and Physics
(
SIAM
,
Philadelphia
,
1985
).
16.
F.
Dalfovo
,
S.
Giorgini
,
L. P.
Pitaevskii
, and
S.
Stringari
, “
Theory of Bose-Einstein condensation in trapped gases
,”
Rev. Mod. Phys.
71
,
463
512
(
1999
).
17.
C. J.
Pethick
and
H.
Smith
,
Bose-Einstein Condensation in Dilute Gases
(
Cambridge University Press
,
2002
).
18.
A.
Aftalion
and
I.
Danaila
, “
Three-dimensional vortex configurations in a rotating Bose-Einstein condensate
,”
Phys. Rev. A
68
,
023603
(
2003
).
19.
N. R.
Cooper
,
S.
Komineas
, and
N.
Papanicolaou
, “
Single vortex states in a confined Bose-Einstein condensate
,”
Phys. Rev. A
72
,
053624
(
2005
).
20.
T. P.
Simula
, “
Crow instability in trapped Bose-Einstein condensates
,”
Phys. Rev. A
84
,
021603
(R) (
2011
).
21.
R. J.
Donnelly
,
Quantized Vortices in Helium II
(
Cambridge University Press
,
1991
).
22.
G. W.
Rayfield
and
F.
Reif
, “
Quantized vortex rings in superfluid helium
,”
Phys. Rev.
136
,
A1194
A1208
(
1964
).
23.
G.
Gamota
, “
Creation of quantized vortex rings in superfluid helium
,”
Phys. Rev. Lett.
31
,
517
520
(
1973
).
24.
B. P.
Anderson
,
P. C.
Haljan
,
C. A.
Regal
,
D. L.
Feder
,
L. A.
Collins
,
C. W.
Clark
, and
E. A.
Cornell
, “
Watching dark solitons decay into vortex rings in a Bose-Einstein condensate
,”
Phys. Rev. Lett.
86
,
2926
2929
(
2001
).
25.
I.
Shomroni
,
E.
Lahoud
,
S.
Levy
, and
J.
Steinhauer
, “
Evidence for an oscillating soliton/vortex ring by density engineering of a Bose-Einstein condensate
,”
Nat. Phys.
5
,
193
197
(
2009
).
26.
J.
Ruostekoski
and
Z.
Dutton
, “
Engineering vortex rings and systems for controlled studies of vortex interactions in Bose-Einstein condensates
,”
Phys. Rev. A
72
,
063626
(
2005
).
27.
J.
Ruostekoski
and
J. R.
Anglin
, “
Creating vortex rings and three-dimensional skyrmions in Bose-Einstein condensates
,”
Phys. Rev. Lett.
86
,
3934
3937
(
2001
).
28.
N. S.
Ginsberg
,
J.
Brand
, and
L. V.
Hau
, “
Observation of hybrid soliton vortex-ring structures in Bose-Einstein condensates
,”
Phys. Rev. Lett.
94
,
040403
(
2005
).
29.
C.
Becker
,
K.
Sengstock
,
P.
Schmelcher
,
P. G.
Kevrekidis
, and
R.
Carretero-González
, “
Inelastic collisions of solitary waves in anisotropic Bose-Einstein condensates: Sling-shot events and expanding collision bubbles
,”
New J. Phys.
15
,
113028
(
2013
).
30.
B.
Jackson
,
J. F.
McCann
, and
C. S.
Adams
, “
Vortex rings and mutual drag in trapped Bose-Einstein condensates
,”
Phys. Rev. A
60
,
4882
4885
(
1999
).
31.
A. S.
Rodrigues
,
P. G.
Kevrekidis
,
R.
Carretero-González
,
D. J.
Frantzeskakis
,
P.
Schmelcher
,
T. J.
Alexander
, and
Yu. S.
Kivshar
, “
Spinor Bose-Einstein condensate past an obstacle
,”
Phys. Rev. A
79
,
043603
(
2009
).
32.
R. G.
Scott
,
A. M.
Martin
,
S.
Bujkiewicz
,
T. M.
Fromhold
,
N.
Malossi
,
O.
Morsch
,
M.
Cristiani
, and
E.
Arimondo
, “
Transport and disruption of Bose-Einstein condensates in optical lattices
,”
Phys. Rev. A
69
,
033605
(
2004
).
33.
N. G.
Berloff
and
C. F.
Barenghi
, “
Vortex nucleation by collapsing bubbles in Bose-Einstein condensates
,”
Phys. Rev. Lett.
93
,
090401
(
2004
).
34.
N. G.
Berloff
, “
Evolution of rarefaction pulses into vortex rings
,”
Phys. Rev. B
65
,
174518
(
2002
).
35.
N. G.
Berloff
, “
Vortex nucleation by a moving ion in a Bose condensate
,”
Phys. Lett. A
277
,
240
244
(
2000
).
36.
N. G.
Berloff
and
P. H.
Roberts
, “
Motions in a Bose condensate: VII. Boundary-layer separation
,”
J. Phys. A
33
,
4025
(
2000
).
37.
N. G.
Berloff
and
P. H.
Roberts
, “
Motion in a Bose condensate: VIII. The electron bubble
,”
J. Phys. A
34
,
81
(
2001
).
38.
N. G.
Berloff
and
P. H.
Roberts
, “
Motion in a Bose condensate: IX. Crow instability of antiparallel vortex pairs
,”
J. Phys. A
34
,
10057
(
2001
).
39.
R.
Carretero-González
,
B. P.
Anderson
,
P. G.
Kevrekidis
,
D. J.
Frantzeskakis
, and
N.
Whitaker
, “
Dynamics of vortex formation in merging Bose-Einstein condensate fragments
,”
Phys. Rev. A
77
,
033625
(
2008
).
40.
R.
Carretero-González
,
N.
Whitaker
,
P. G.
Kevrekidis
, and
D. J.
Frantzeskakis
, “
Vortex structures formed by the interference of sliced condensates
,”
Phys. Rev. A
77
,
023605
(
2008
).
41.
P. H.
Roberts
and
J.
Grant
, “
Motions in a Bose condensate I. The structure of the large circular vortex
,”
J. Phys. A
4
,
55
72
(
1971
).
42.
C. H.
Hsueh
,
S. C.
Gou
,
T. L.
Horng
, and
Y. M.
Kao
, “
Vortex-ring solutions of the Gross-Pitaevskii equation for an axisymmetrically trapped Bose-Einstein condensate
,”
J. Phys. B
40
,
4561
4571
(
2007
).
43.
F.
Maggioni
,
S.
Alamri
,
C. F.
Barenghi
, and
R. L.
Ricca
, “
Velocity, energy, and helicity of vortex knots and unknots
,”
Phys. Rev. E
82
,
026309
(
2010
).
44.
J. L.
Helm
,
C. F.
Barenghi
, and
A. J.
Youd
, “
Slowing down of vortex rings in Bose-Einstein condensates
,”
Phys. Rev. A
83
,
045601
(
2011
).
45.
R. M.
Caplan
and
R.
Carretero-González
, “
A two-step high-order compact scheme for the Laplacian operator and its implementation in an explicit method for integrating the nonlinear Schrödinger equation
,”
J. Comput. Appl. Math.
251
,
33
46
(
2013
).
46.
R. M.
Caplan
and
R.
Carretero-González
, “
Numerical stability of explicit Runge-Kutta finite-difference schemes for the nonlinear Schrödinger equation
,”
Appl. Numer. Math.
71
,
24
40
(
2013
).
47.
R. M.
Caplan
and
R.
Carretero-González
, “
A modulus-squared Dirichlet boundary condition for time-dependent complex partial differential equations and its application to the nonlinear Schrödinger equation
,”
SIAM J. Sci. Comput.
36
,
A1
A19
(
2014
).
48.
R. M.
Caplan
, “
NLSEmagic: Nonlinear Schrödinger equation multi-dimensional Matlab-based GPU-accelerated integrators using compact high-order schemes
,”
Comput. Phys. Commun.
184
,
1250
1271
(
2013
).
49.
The NLSEmagic code package can be freely downloaded from http://www.nlsemagic.com.
50.
M.
Guilleumas
,
D. M.
Jezek
,
R.
Mayol
,
M.
Pi
, and
M.
Barranco
, “
Generating vortex rings in Bose-Einstein condensates in the line-source approximation
,”
Phys. Rev. A
65
,
053609
(
2002
).
51.
D.
Amit
and
E. P.
Gross
, “
Vortex rings in a Bose fluid
,”
Phys. Rev.
145
,
130
136
(
1966
).
52.
A. L.
Fetter
, “
Vortices in an imperfect Bose gas. IV. Translational velocity
,”
Phys. Rev.
151
,
100
104
(
1966
).
53.
J.
Koplik
and
H.
Levine
, “
Scattering of superfluid vortex rings
,”
Phys. Rev. Lett.
76
,
4745
4748
(
1996
).
54.
V. L.
Ginzburg
and
L. P.
Pitaevskii
, “
On the theory of superfluidity
,”
Sov. Phys. JETP
7
,
858
861
(
1958
).
55.
P.
Roberts
and
N.
Berloff
, “
The nonlinear Schrödinger equation as a model of superfluidity
,” in
Quantized Vortex Dynamics and Superfluid Turbulence
,
Lecture Notes in Physics
Vol.
571
, edited by
C.
Barenghi
,
R.
Donnelly
, and
W.
Vinen
(
Springer
,
Berlin
,
2001
), pp.
235
257
.
56.
L. P.
Pitaevskii
, “
Vortex lines in an imperfect Bose gas
,”
Sov. Phys. JETP
13
,
451
454
(
1961
).
57.
R. M.
Caplan
, “
Study of vortex ring dynamics in the nonlinear Schrödinger equation utilizing GPU-accelerated high-order compact numerical integrators
,” Ph.D. thesis (
Claremont Graduate University and San Diego State University
,
2012
).
58.
C. T.
Kelley
, “
Solving nonlinear equations with Newton's method
,”
Fundamentals of Algorithms
(
SIAM
,
2003
).
59.
A. L.
Fetter
, “
Kelvin mode of a vortex in a nonuniform Bose-Einstein condensate
,”
Phys. Rev. A
69
,
043617
(
2004
).
60.
T. P.
Simula
,
T.
Mizushima
, and
K.
Machida
, “
Vortex waves in trapped Bose-Einstein condensates
,”
Phys. Rev. A
78
,
053604
(
2008
).
61.
T.-L.
Horng
,
S.-C.
Gou
, and
T.-C.
Lin
, “
Bending-wave instability of a vortex ring in a trapped Bose-Einstein condensate
,”
Phys. Rev. A
74
,
041603
(
2006
).
62.
F.
Chevy
and
S.
Stringari
, “
Kelvin modes of a fast rotating Bose-Einstein condensate
,”
Phys. Rev. A
68
,
053601
(
2003
).
63.
J. J.
García-Ripoll
and
V. M.
Pérez-García
, “
Vortex bending and tightly packed vortex lattices in Bose-Einstein condensates
,”
Phys. Rev. A
64
,
053611
(
2001
).
64.
D.
Proment
,
C. F.
Barenghi
, and
M.
Onorato
, “
Interaction and decay of Kelvin waves in the Gross-Pitaevskii model
,” e-print arXiv:1308.0852.
65.
B.
Eckhardt
and
H.
Aref
, “
Integrable and chaotic motions of four vortices II. Collision dynamics of vortex pairs
,”
Philos. Trans. R. Soc. London, Ser. A
326
,
655
696
(
1988
).
66.
T.
Price
, “
Chaotic scattering of two identical point vortex pairs
,”
Phys. Fluids A
5
,
2479
(
1993
).
67.
L.
Tophøj
and
H.
Aref
, “
Chaotic scattering of two identical point vortex pairs revisited
,”
Phys. Fluids
20
,
093605
(
2008
).
68.
M.
Konstantinov
, “
Chaotic phenomena in the interaction of vortex rings
,”
Phys. Fluids
6
,
1752
1767
(
1994
).
69.
B. N.
Shashikanth
and
J. E.
Marsden
, “
Leapfrogging vortex rings: Hamiltonian structure, geometric phases and discrete reduction
,”
Fluid. Dyn. Res.
33
,
333
356
(
2003
).
70.
A. J.
Niemi
and
P.
Sutcliffe
, “
Leapfrogging vortex rings in the Landau-Lifshitz equation
,”
Nonlinearity
27
,
2095
2109
(
2014
).
71.
G. K.
Batchelor
,
An Introduction to Fluid Mechanics
(
Cambridge University Press
,
1967
).
72.
P. G.
Saffman
,
Vortex Dynamics
,
Cambridge Monographs on Mechanics
(
Cambridge University Press
,
1995
).
73.
F.
Dyson
, “
The potential of an anchor ring. Part II
,”
Philos. Trans. R. Soc. London, Ser. A
184
,
1041
1106
(
1893
).
74.
W. M.
Hicks
, “
On the mutual threading of vortex rings
,”
Proc. R. Soc. London, Ser. A
102
,
111
131
(
1922
).
75.
D. H.
Wacks
,
A. W.
Baggaley
, and
C. F.
Barenghi
, “
Coherent laminar and turbulent motion of toroidal vortex bundles
,” e-print arXiv:1401.6468.
76.
D. J.
Acheson
, “
Instability of vortex leapfrogging
,”
Eur. J. Phys.
21
,
269
273
(
2000
).
77.
L.
Tophøj
and
H.
Aref
, “
Instability of vortex pair leapfrogging
,”
Phys. Fluids
25
,
014107
(
2013
).
You do not currently have access to this content.