Here we show that asymmetric fully localized flexural-gravity lumps can propagate on the surface of an inviscid and irrotational fluid covered by a variable-thickness elastic material, provided that the thickness varies only in one direction and has a local minimum. We derive and present equations governing the evolution of the envelope of flexural-gravity wave packets allowing the flexing material to have small variations in the transverse (to propagation) direction. We show that the governing equation belongs to the general family of Davey-Stewartson equations, but with an extra term in the surface evolution equation that accounts for the variable thickness of the elastic cover. We then use an iterative Newton-Raphson scheme, with a numerical continuation procedure via Lagrange interpolation, in a search to find fully localized solutions of this system of equations. We show that if the elastic sheet thickness has (at least) a local minimum, flexural-gravity lumps can propagate near the minimum thickness, and in general have an asymmetric bell-shape in the transverse to the propagation direction. In applied physics, flexural-gravity waves describe for instance propagation of waves over the ice-covered bodies of water. Ice is seldom uniform, nor is the seafloor, and in fact near the boundaries (ice-edges, shorelines) they typically vary only in one direction (toward to edge), and are uniform in the transverse direction. This research suggests that fully localized waves are not restricted to constant ice-thickness/water-depth areas and can exist under much broader conditions. Presented results may have implications in experimental generation and observation of flexural-gravity (as well as capillary-gravity) lumps.

1.
R.
Beals
and
R. R.
Coifman
, “
The D-bar approach to inverse scattering and nonlinear evolutions
,”
Physica D
18
,
242
249
(
1986
).
2.
W.
Craig
, “
Non-existence of solitary water waves in three dimensions
,”
Philos. Trans. R. Soc., A
360
,
2127
35
(
2002
).
3.
A. S.
Fokas
, “
Dromions and the boundary value problem for Davey-Stewartson I equations
,”
Physica D
44
,
99
130
(
1990
).
4.
M.-R.
Alam
, “
Dromions of flexural-gravity waves
,”
J. Fluid Mech.
719
,
1
13
(
2013
).
5.
K.
Berger
and
P.
Milewski
, “
The generation and evolution of lump solitary waves in surface-tension-dominated flows
,”
SIAM J. Appl. Math.
61
,
731
750
(
2000
).
6.
B.
Kim
and
T. R.
Akylas
, “
On gravity-capillary lumps
,”
J. Fluid Mech.
540
,
337
351
(
2005
).
7.
E. I.
Parau
,
J.-M.
Vanden-Broeck
, and
M. J.
Cooker
, “
Three-dimensional capillary-gravity waves generated by a moving disturbance
,”
Phys. Fluids
19
,
082102
(
2007
).
8.
P. A.
Milewski
and
Z.
Wang
, “
Three dimensional flexural-gravity waves
,”
Stud. Appl. Math.
131
,
135
148
(
2013
).
9.
A.
Davey
and
K.
Stewartson
, “
On three-dimensional packets of surface waves
,”
Proc. R. Soc. A
338
,
101
110
(
1974
).
10.
H.
Hasimoto
and
H.
Ono
, “
Nonlinear modulation of gravity waves
,”
J. Phys. Soc. Jpn.
33
,
805
811
(
1972
).
11.
V. E.
Zakharov
, “
Stability of periodic waves of finite amplitude on the surface of a deep fluid
,”
J. Appl. Mech. Tech. Phys.
9
,
190
194
(
1968
).
12.
B.
Champagne
and
P.
Winternitz
, “
On the infinite dimensional symmetry group of the Davey-Stewartson equations
,”
J. Math. Phys.
29
,
1
8
(
1988
).
13.
P. A.
Clarkson
and
S.
Hood
, “
New symmetry reductions and exact solutions of the Davey-Stewartson system. I. Reductions to ordinary differential equations
,”
J. Math. Phys.
35
,
255
283
(
1994
).
14.
B.
Li
,
W.-C.
Ye
, and
Y.
Chen
, “
Symmetry, full symmetry groups, and some exact solutions to a generalized Davey-Stewartson system
,”
J. Math. Phys.
49
,
103503
(
2008
).
15.
E.
Hızel
,
N.
Turgay
, and
B.
Guldogan
, “
The symmetry reductions and new exact solutions of the generalized Davey-Stewartson equation
,”
Int. J. Contemp. Math. Sci.
4
,
883
894
(
2009
).
16.
R.
Gundersen
, “
The evolution of packets of surface waves
,”
Int. J. Nonlineaer Mech.
28
,
187
194
(
1993
).
17.
M.
Boiti
,
L.
Martina
, and
F.
Pempinelli
, “
Scattering of localized solitons in the plane
,”
Phys. Lett. A
132
,
432
439
(
1988
).
18.
V.
Djordjevic
and
L.
Redekopp
, “
On two-dimensional packets of capillary-gravity waves
,”
J. Fluid Mech.
79
,
703
714
(
1977
).
19.
R.
Hirota
,
The Direct Method in Soliton Theory
(
Cambridge University Press
,
Cambridge
,
2004
).
20.
C. R.
Gilson
and
J. J. C.
Nimmo
, “
A direct method for dromion solutions of the Davey-Stewartson equations and their asymptotic properties
,”
Proc. R. Soc. A
435
,
339
357
(
1991
).
21.
J.
Hietarinta
and
R.
Hirota
, “
Multidromion solutions to the Davey-Stewartson equation
,”
Phys. Lett. A
145
,
237
244
(
1990
).
22.
J.
Satsuma
and
M.
Ablowitz
, “
Two-dimensional lumps in nonlinear dispersive systems
,”
J. Math. Phys.
20
,
1496
1503
(
1979
).
23.
S. V.
Manakov
,
V. E.
Zakharov
,
L. A.
Bordag
,
A. R.
Its
, and
V. B.
Matveev
, “
Two-dimensional solitons of the KP equation and their interaction
,”
Phys. Lett. A
63
,
205
206
(
1977
).
24.
M.
Ablowitz
and
H.
Segur
, “
On the evolution of packets of water waves
,”
J. Fluid Mech.
92
,
691
715
(
1979
).
25.
M. D.
Groves
and
S.
Sun
, “
Fully localized solitary-wave solutions of three-dimensional gravity-capillary water-wave problem
,”
Arch. Ration. Mech. Anal.
188
,
1
91
(
2008
).
26.
E. I.
Parau
,
J.-M.
Vanden-Broeck
, and
M. J.
Cooker
, “
Nonlinear three-dimensional gravity-capillary solitary waves
,”
J. Fluid Mech.
536
,
99
105
(
2005
).
27.
J.-M.
Vanden-Broeck
and
E. I.
Parau
, “
Two-dimensional generalized solitary waves and periodic waves under an ice sheet
,”
Proc. R. Soc. London, Ser. A
369
,
2957
72
(
2011
).
28.
J.
Toland
, “
Heavy hydroelastic travelling waves
,”
Proc. R. Soc. A
463
,
2371
2397
(
2007
).
29.
L.
Forbes
, “
Surface waves of large amplitude beneath an elastic sheet. Part 1. High-order series solution
,”
J. Fluid Mech.
169
,
409
428
(
1986
).
30.
L.
Forbes
, “
Surface waves of large amplitude beneath an elastic sheet. Part 2. Galerkin solution
,”
J. Fluid Mech.
188
,
491
508
(
1988
).
31.
Z.
Wang
,
J.-M.
Vanden-Broeck
, and
P. A.
Milewski
, “
Two-dimensional flexural-gravity waves of finite amplitude in deep water
,”
IMA J. Appl. Math.
78
,
750
761
(
2013
).
32.
E.
Parau
and
F.
Dias
, “
Nonlinear effects in the response of a floating ice plate to a moving load
,”
J. Fluid Mech.
460
,
281
305
(
2002
).
33.
J.
Miles
and
D.
Sneyd
, “
The response of a floating ice sheet to an accelerating line load
,”
J. Fluid Mech.
497
,
435
439
(
2003
).
34.
F.
Bonnefoy
,
M. H.
Meylan
, and
P.
Ferrant
, “
Nonlinear higher-order spectral solution for a two-dimensional moving load on ice
,”
J. Fluid Mech.
621
,
215
(
2009
).
35.
E. I.
Parau
and
J.-M.
Vanden-Broeck
, “
Three-dimensional waves beneath an ice sheet due to a steadily moving pressure
,”
Philos. Trans. R. Soc., A
369
,
2973
88
(
2011
).
36.
J.
Davys
,
R.
Hosking
, and
A.
Sneyd
, “
Waves due to a steadily-moving source on a floating ice plate
,”
J. Fluid Mech.
158
,
269
287
(
1985
).
37.
M.
Schulkes
,
R. J.
Hosking
, and
A.
Sneyd
, “
Waves due to a steadily moving source on a floating ice plate. Part 2
,”
J. Fluid Mech.
180
,
297
318
(
1987
).
38.
P.
Guyenne
and
E. I.
Parau
, “
Forced and unforced flexural-gravity solitary waves
,”
Proc. IUTAM
11
,
44
57
(
2014
).
39.
E. I.
Parau
and
J.-M.
Vanden-Broeck
, “
Three-dimensional nonlinear waves under an ice sheet and related flows
,” in
Proceedings of the 21st International Offshore and Polar Engineering Conference (ISOPE)
,
Maui, Hawaii, USA
(
ISOPE
,
2011
), pp.
1008
1014
.
40.
Z.
Wang
,
P. A.
Milewski
, and
J.-M.
Vanden-Broeck
, “
Computation of three-dimensional flexural-gravity solitary waves in arbitrary depth
,”
Proc. IUTAM
11
,
119
129
(
2014
).
41.
Y.
Liang
and
R.
Alam
, “
Finite-depth capillary-gravity dromions
,”
Phys. Rev. E
88
,
035201
(
2013
).
42.
F.
Appl
and
N. R.
Byers
, “
Fundamental frequency of simply supported rectangular plates with linearly varying thickness
,”
J. Appl. Mech.
32
,
163
168
(
1965
).
43.
M.
Belzons
,
E.
Guazzelli
, and
O.
Prodi
, “
Gravity waves on a rough bottom: Experimental evidence of one-dimensional localization
,”
J. Fluid Mech.
186
,
539
558
(
1988
).
44.
P.
Devillard
,
F.
Dunlop
, and
B.
Souillard
, “
Localization of gravity waves on a channel with a random bottom
,”
J. Fluid Mech.
186
,
521
538
(
1988
).
45.
R.
Johnson
,
A Modern Introduction to the Mathematical Theory of Water Waves
(
Cambridge University Press
,
Cambridge
,
1997
).
46.
D. J.
Benney
and
G. J.
Roskes
, “
Wave instabilities
,”
Stud. Appl. Math.
48
,
377
385
(
1969
).
47.
M.
Hǎrǎguş-Courcelle
and
A.
Il'ichev
, “
Three-dimensional solitary waves in the presence of additional surface effects
,”
Eur. J. Mech. B: Fluids
17
,
739
768
(
1998
).
48.
P. A.
Milewski
,
J.-M.
Vanden-Broeck
, and
Z.
Wang
, “
Hydroelastic solitary waves in deep water
,”
J. Fluid Mech.
679
,
628
640
(
2011
).
49.
P. I.
Plotnikov
and
J. F.
Toland
, “
Modelling nonlinear hydroelastic waves
,”
Philos. Trans. R. Soc.
369
,
2942
56
(
2011
).
50.
X.
Chen
,
J.
Jensen
,
W.
Cui
, and
S.
Fu
, “
Hydroelasticity of a floating plate in multidirectional waves
,”
Ocean Eng.
30
,
1997
2017
(
2003
).
51.
R.
Cipolatti
, “
On the existence of standing waves for a Davey-Stewartson system
,”
Commun. Partial Diff. Equations
17
,
967
988
(
1992
).
52.
B.
Kim
, “
Three-dimensional solitary waves in dispersive wave systems
,” Ph.D. dissertation,
MIT
,
2006
.
53.
J.
Diorio
,
Y.
Cho
,
J. H.
Duncan
, and
T. R.
Akylas
, “
Gravity-capillary lumps generated by a moving pressure source
,”
Phys. Rev. Lett.
103
,
214502
(
2009
).
54.
J. D.
Diorio
,
Y.
Cho
,
J. H.
Duncan
, and
T. R.
Akylas
, “
Resonantly forced gravity-capillary lumps on deep water. Part 1. Experiments
,”
J. Fluid Mech.
672
,
268
287
(
2011
).
55.
Y.
Cho
,
J. D.
Diorio
,
T. R.
Akylas
, and
J. H.
Duncan
, “
Resonantly forced gravity-capillary lumps on deep water. Part 2. Theoretical model
,”
J. Fluid Mech.
672
,
288
306
(
2011
).
56.
H.
Lamb
,
Hydrodynamics
(
Cambridge University Press
,
Cambridge
,
1895
).
57.
M. S.
Longuet-Higgins
, “
Viscous dissipation in steep capillary gravity waves
,”
J. Fluid Mech.
344
,
271
289
(
1997
).
58.
D.
Myrhaug
, “
Bottom friction beneath random waves
,”
Coastal Eng.
24
,
259
273
(
1995
).
You do not currently have access to this content.