Low-frequency unsteadiness of vortices over an ogive-cylinder body was studied using numerical simulation and Dynamic Mode Decomposition (DMD). The results revealed that the vortices over the fore-body of the slender body can exhibit vortex oscillation with a non-dimensional frequency of 0.054 at 70° angle-of-attack, but the flow pattern over the aft-body downstream is Kármán vortex shedding. The vortex oscillation induces larger sectional side-forces on the body than vortex shedding. The DMD analysis for the sectional flow fields at various sections shows that the most energetic mode corresponds to the vortex oscillation at the fore-body and the vortex shedding at the aft-body except the mode for a mean flow, and the associated frequencies are identical to the ones of the sectional side-forces obtained by Fourier transformation.

1.
L. E.
Ericsson
and
J. P.
Reding
, “
Asymmetric flow separation and vortex shedding on bodies of revolution
,”
Prog. Astronaut. Aeronaut.
141
,
391
452
(
1991
).
2.
G. G.
Zilliac
,
D.
Degani
, and
M.
Tobak
, “
Asymmetric vortices on a slender body of revolution
,”
AIAA J.
29
,
667
675
(
1991
).
3.
K. D.
Thomson
and
D. F.
Morrison
, “
The spacing, position and strength of vortices in the wake of slender cylindrical bodies at large incidence
,”
J. Fluid Mech.
50
,
751
783
(
1971
).
4.
X. Y.
Deng
,
G.
Wang
,
X. R.
Chen
,
Y. K.
Wang
,
P. Q.
Liu
, and
Z. X.
Xi
, “
A physical model of asymmetric vortices flow structure in regular state over slender body at high angle of attack
,”
Sci. China E
46
,
561
573
(
2003
).
5.
P. J.
Lamont
, “
Pressures around an inclined ogive cylinder with laminar, transitional, or turbulent separation
,”
AIAA J.
20
,
1492
1499
(
1982
).
6.
D. H.
Bridges
and
H. G.
Hornung
, “
Elliptic tip effects on the vortex wake of an axisymmetric body at incidence
,”
AIAA J.
32
,
1437
1445
(
1994
).
7.
Y.
Levy
,
L.
Hesselink
, and
D.
Degani
, “
Systematic study of the disturbances and flow asymmetries
,”
AIAA J.
34
,
772
777
(
1996
).
8.
J. E.
Bernhardt
and
D. R.
Williams
, “
Proportional control of asymmetric forebody vortices
,”
AIAA J.
36
,
2087
2093
(
1998
).
9.
X.
Ming
and
Y. S.
Gu
, “
Control of asymmetric flow fields of slender bodies at high angle of attack
,”
Chin. J. Aeronaut.
19
,
168
174
(
2006
).
10.
F.
Liu
,
S.
Luo
,
C.
Gao
,
X.
Meng
,
J.
Hao
,
J.
Wang
, and
Z.
Zhao
, “
Flow control over a conical forebody using duty-cycled plasma actuators
,”
AIAA J.
46
,
2969
2973
(
2008
).
11.
S. E.
Ramberg
, “
The effects of yaw and finite length upon the vortex wakes of stationary and vibrating circular cylinders
,”
J. Fluid Mech.
128
,
81
107
(
1983
).
12.
S. R.
Snarski
, “
Flow over yawed circular cylinders: Wall pressure spectra and flow regimes
,”
Phys. Fluids
16
,
344
359
(
2004
).
13.
M. D.
Zeiger
,
D. P.
Telionis
, and
P. P.
Vlachos
, “
Unsteady separated flows over three-dimensional slender bodies
,”
Prog. Aerospace Sci.
40
,
291
320
(
2004
).
14.
D.
Degani
, and
G. G.
Zilliac
, “
Experimental study of nonsteady asymmetric flow around an ogive-cylinder at incidence
,”
AIAA J.
28
,
642
649
(
1990
).
15.
D.
Degani
, “
Numerical simulation of vortex unsteadiness on a slender body at high incidence
,”
AIAA J.
30
,
841
843
(
1992
).
16.
D.
Degani
, “
Effect of splitter plate on unsteady flows around a body of revolution at incidence
,”
Phys. Fluids
3
,
2122
(
1991
).
17.
Y.
Ma
,
P. Q.
Liu
,
X. Y.
Deng
, and
J. L.
Shi
The unsteadiness study of nose vortices in the flow over slender body at high angles of attack
,”
Exp. Meas. Fluid Mech.
18
,
72
77
(
2004
).
18.
B. F.
Ma
,
Y.
Huang
, and
T. X.
Liu
, “
Low frequency unsteadiness of vortex wakes over slender bodies at high angle of attack
,”
Chin. J. Aeronaut.
(published online
2014
).
19.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
20.
Ansys Fluent manual 14.5, Ansys Inc.
21.
M.
Germane
,
U.
Piomelli
,
P.
Moin
, and
W. H.
Cabot
, “
A dynamic subgrid-scale eddy viscosity model
,”
Phys. Fluids
3
,
1760
(
1991
).
22.
D. K.
Lilly
, “
A proposed modification of the germano subgrid-scale closure model
,”
Phys. Fluids
4
,
633
635
(
1992
).
23.
C. M.
Rhie
and
W. L.
Chow
, “
Numerical study of the turbulent flow past an airfoil with trailing edge separation
,”
AIAA J.
21
,
1525
1532
(
1983
).
24.
B. P.
Leonard
, “
The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection
,”
Comput. Methods Appl. Mech. Eng.
88
,
17
74
(
1991
).
25.
P. H.
Gaskell
and
A. K. C.
Lau
, “
Curvature-compensated convective transport: SMART, a new boundedness-preserving trasport algorithm
,”
Int. J. Numer. Methods Fluids
8
,
617
641
(
1988
).
26.
S. Y.
Chen
,
Z. H.
Xia
,
S. Y.
Pei
,
J. C.
Wang
,
Y. T.
Yang
,
Z. L.
Xiao
, and
Y. P.
Shi
, “
Reynolds-stress-constrained large-eddy simulation of wall-bounded turbulent flows
,”
J. Fluid Mech.
703
,
1
28
(
2012
).
27.
B. F.
Ma
,
X. Y.
Deng
, and
Y.
Chen
, “
Effects of forced asymmetric transition on vortex asymmetry around slender bodies
,”
AIAA J.
45
,
2671
2676
(
2007
).
28.
J.
Jeong
and
F.
Hussain
, “
On the identification of a vortex
,”
J. Fluid Mech.
285
,
69
94
(
1995
).
You do not currently have access to this content.