This paper investigates the flow through and over two-dimensional rectangular roughness elements, arranged in a building-street canyon geometry through a series of experiments. Geometries of different packing densities of the roughness elements (λp) were examined and the packing density values ranged from λp = 0.30 to 0.67. The purpose of the work is: (i) to investigate the flow physics observed both at the boundary layer scale as well as at the scale within the roughness elements for a range of packing densities, (ii) to deduce parameterizations of the adjusted rough boundary layer and their variation with a change in the packing density, and (iii) given a particular interest in and application to the urban atmosphere, a final aim at the roughness-element scale is to deduce the variation of the breathability with the packing density variation. Particle image velocimetery measurements of the velocity flow field as well as the turbulent kinetic energy and the Reynolds Stress (within and up to well-above the street canyons) were conducted. The results reveal qualitative flow features as well as features of the adjusted boundary layer structure—in particular the roughness and inertial sublayers, which can be associated with the surface roughness length, zero-plane displacement thickness, and the friction velocity. The lowest friction velocities are exhibited in the geometries with the highest- and lowest packing densities while the maximum friction velocities are observed in the medium-packed geometries. The exchange processes and breathability at the level of the roughness elements top were characterized and quantified by a mean exchange velocity. The results show that unlike friction velocity, the normalized exchange velocity (over the mean bulk velocity) for the most dense and sparse geometries differ by more than 80%, with the denser-packed geometries exhibiting lower exchange velocities; this is shown to be related with the thickness of the developed roughness sublayer.

1.
H.
Schlichting
and
K.
Gersten
,
Boundary Layer Theory
, 8th ed. (
Springer-Verlag
,
Berlin
,
2000
).
2.
T. B.
Nickels
, in
Proceedings of IUTAM Symposium on The Physics of Wall-Bounded Turbulent Flows on Rough Walls, Cambridge, UK, 7–9 July 2009
,
IUTAM Book Series
Vol.
22
(
Springer
,
2010
).
3.
O.
Cadot
,
D.
Bonn
, and
S.
Douady
, “
Turbulent drag reduction in a closed flow system: Boundary layer versus bulk effects
,”
Phys. Fluids
10
,
426
(
1998
).
4.
A.
Ferrante
and
S.
Elghobashi
, “
On the physical mechanisms of drag reduction in a spatially developing turbulent boundary layer laden with microbubbles
,”
J. Fluid Mech.
503
,
345
(
2004
).
5.
J. R.
Garratt
,
The Atmospheric Boundary Layer, Cambridge Atmospheric and Space Science Series
(
Cambridge University Press
,
Cambridge
,
1992
).
6.
C.
Gordon
, “
Intermittent momentum transport in a geophysical boundary layer
,”
Nature (London)
248
,
392
(
1974
).
7.
R. E.
Britter
, and
S. R.
Hanna
, “
Flow and dispersion in urban areas
,”
Ann. Rev. Fluid Mech.
35
,
469
(
2003
).
8.
M. K.-A.
Neophytou
,
D.
Goussis
,
E.
Mastorakos
, and
R. E.
Britter
, “
The development of a scale-adaptive reactive pollutant dispersion model
,”
Atmos. Environ.
39
,
2787
(
2005
).
9.
H. J. S.
Fernando
, “
Fluid mechanics of urban atmospheres in complex terrain
,”
Annu. Rev. Fluid Mech.
42
,
365
(
2010
).
10.
H. J. S.
Fernando
,
D.
Zajic
,
S.
DiSabatino
,
R.
Dimitrova
,
B.
Hedquist
, and
A.
Dallman
, “
Flow, turbulence and pollutant dispersion in urban atmospheres
,”
Phys. Fluids
22
,
051301
(
2010
).
11.
C. S. B.
Grimmond
and
T. R.
Oke
, “
Aerodynamic properties of urban areas derived from analysis of surface form
,”
J. Appl. Meteorol.
38
,
1262
(
1999
).
12.
J. R.
Garratt
, “
Surface influence upon vertical profiles in the atmospheric near-surface layer
,”
Q. J. R. Meteorol. Soc.
106
,
803
(
1980
).
13.
R. W.
Macdonald
,
R. F.
Griffiths
, and
D. J.
Hall
, “
An improved method for the estimation of surface roughness of obstacle arrays
,”
Atmos. Environ.
32
,
1857
(
1998
).
14.
H.
Cheng
and
I. P.
Castro
, “
Near wall flow over urban-like roughness
,”
Bound.-Layer Meteorol.
104
,
229
(
2002
).
15.
H.
Cheng
,
P.
Hayden
,
A. G.
Robins
, and
I. P.
Castro
, “
Flow over cube arrays of different packing densities
,”
J. Wind Eng. Ind. Aerodyn.
95
,
715
(
2007
).
16.
R. A.
Antonia
and
P.-Å.
Krogstad
, “
Turbulence structure in boundary layer over different type of surface roughness
,”
Fluid Dyn. Res.
28
,
139
(
2001
).
17.
P.-Å.
Krogstad
and
V.
Efros
, “
About turbulence statistics in the outer part of a boundary layer developing over two-dimensional surface roughness
,”
Phys. Fluids
24
,
075112
(
2012
).
18.
M. J.
Brown
,
R. E.
Lawson
,
D. S.
DeCroix
, and
R. L.
Lee
, “
Mean flow and turbulence measurements around a 2-D array of buildings in a wind tunnel
,” in
Proceedings of the 11th Joint Conference on Applications of Air Pollution Meteorology with the Air and Waste Management Association, American Meteorological Society, Long Beach, CA, USA, 9–14 January 2000
,
Paper No. 4A.2. Los Alamos National Laboratory Unclassified Report, LA-UR-99-5395
.
19.
P.-Å.
Krogstad
,
R. A.
Antonia
, and
L. W. B.
Browne
, “
Comparison between rough- and smooth-wall turbulent boundary layers
,”
J. Fluid Mech.
245
,
599
(
1992
).
20.
K. A.
Flack
,
M. P.
Schultz
, and
J. S.
Connelly
, “
Examination of a critical roughness height for outer layer similarity
,”
Phys. Fluids
19
,
095104
(
2007
).
21.
S.
Leonardi
,
P.
Orlandi
,
R. J.
Smalley
,
L.
Djenidi
, and
R. A.
Antonia
, “
Direct numerical simulations of turbulent channel flow with transverse square bars on one wall
,”
J. Fluid Mech.
491
,
229
(
2003
).
22.
P.
Kastner-Klein
,
R.
Berkowicz
, and
R.
Britter
, “
The influence of street architecture on flow and dispersion in street canyons
,”
Meteorol. Atmos. Phys.
87
,
121
(
2004
).
23.
P.
Kastner-Klein
and
M. W.
Rotach
, “
Mean flow and turbulence characteristics in an urban roughness sublayer
,”
Bound.-Layer Meteorol.
111
,
55
(
2004
).
24.
I.
Eliasson
,
B.
Offerle
,
C. S. B.
Grimmond
, and
S.
Lindqvist
, “
Wind fields and turbulence statistics in an urban street canyon
,”
Atmos. Environ.
40
,
1
(
2006
).
25.
M. W.
Rotach
, “
Turbulence close to a rough urban surface part II: Variances and gradients
,”
Bound.-Layer Meteorol.
66
,
75
(
1993
).
26.
M. W.
Rotach
, “
Profiles of turbulence statistics in and above an urban street canyon
,”
Atmos. Environ.
29
,
1473
(
1995
).
27.
P.
Louka
,
S. E.
Belcher
, and
R. G.
Harrison
, “
Coupling between air flow in streets and the well-developed boundary layer aloft
,”
Atmos. Environ.
34
,
2613
(
2000
).
28.
S. E.
Belcher
, “
Mixing and transport in urban areas
,”
Philos. Trans. R. Soc. A
363
,
2947
(
2005
).
29.
T.
Bentham
and
R.
Britter
, “
Spatially averaged flow within obstacle arrays
,”
Atmos. Environ.
37
,
2037
(
2003
).
30.
D.
Hamlyn
and
R.
Britter
, “
A numerical study of the flow field and exchange processes within a canopy of urban-type roughness
,”
Atmos. Environ.
39
,
3243
(
2005
).
31.
I.
Panagiotou
,
M.
Neophytou
,
D.
Hamlyn
, and
R.
Britter
City breathability as quantified by the exchange velocity and its spatial variation in real inhomogeneous urban geometries: An example from central London urban area
,”
Sci. Total Environ.
442
,
466
(
2013
).
32.
M.
Neophytou
,
A.
Gowardan
, and
M. J.
Brown
, “
An inter-comparison of three urban wind models using Oklahoma City Joint Urban 2003 wind field measurements
,”
J. Wind Eng. Ind. Aerodyn.
99
,
357
(
2011
)
33.
F.
Caton
,
R. E.
Britter
, and
S.
Dalziel
, “
Dispersion mechanisms in a street canyon
,”
Atmos. Environ.
37
,
693
(
2003
).
34.
J. F.
Barlow
,
I. N.
Harman
, and
S. E.
Belcher
, “
Scalar fluxes from urban street canyons. Part I: Laboratory simulation
,”
Bound.-Layer Meteorol.
113
,
369
(
2004
).
35.
L.
Soulhac
,
R. J.
Perkins
, and
P.
Salizzoni
, “
Flow in a street canyon for any external wind direction
,”
Bound.-Layer Meteorol.
126
,
365
(
2008
).
36.
P.
Salizzoni
,
L.
Soulhac
, and
P.
Mejean
, “
Street canyon ventilation and atmospheric turbulence
,”
Atmos. Environ.
43
,
5056
(
2009
).
37.
X.-X.
Li
,
D. Y. C.
Leung
,
C.-H.
Liu
, and
K. M.
Lam
, “
Physical modeling of flow field inside urban street canyons
,”
J. Appl. Meteorol. Climatol.
47
,
2058
(
2008
).
38.
M.
Princevac
,
J. J.
Baik
,
X.
Li
,
H.
Pan
and
S.-B.
Park
, “
Lateral channelling within rectangular arrays of cubical obstacles
,”
J. Wind Eng. Ind. Aerodyn.
98
,
377
(
2010
).
39.
I.
Harman
,
J.
Barlow
, and
S.
Belcher
, “
Scalar fluxes from urban street canyons. Part II: Model
,”
Bound.-Layer Meteorol.
113
,
387
(
2004
).
40.
Y.
Yang
, and
Y.
Shao
, “
A scheme for scalar exchange in the urban boundary layer
,”
Bound.-Layer Meteorol.
120
,
111
(
2006
).
41.
C.-H.
Liu
,
D. Y. C.
Leung
, and
M. C.
Barth
, “
On the prediction of air and pollutant and exchange rates in canyons of different aspect ratios using large-eddy simulation
,”
Atmos. Environ.
39
,
1567
(
2005
).
42.
P.
Orlandi
,
S.
Leonardi
,
R.
Tuzi
, and
R. A.
Antonia
, “
Direct numerical simulation of turbulent channel flow with wall velocity disturbances
,”
Phys. Fluids
15
,
3587
(
2003
).
43.
M.
Motozawa
,
T.
Ito
,
K.
Iwamoto
,
H.
Kawashima
,
H.
Ando
,
T.
Senda
,
Y.
Tsuji
, and
Y.
Kawaguchi
, “
Experimental investigations on frictional resistance and velocity distribution of rough wall with regularly distributed triangular ribs
,”
Int. J. Heat Fluid Flow
41
,
112
(
2013
).
44.
T.
Ito
,
A.
Matsumoto
,
T.
Ito
,
M.
Motozawa
,
K.
Iwamoto
,
H.
Kawashima
,
H.
Ando
,
T.
Senda
, and
Y.
Kawaguchi
, “
Experimental investigation on effects of surface roughness geometry affecting to flow resistance
,” in
Proceedings of ASME-JSME-KSME Joint Fluids Engineering Conference: Volume 1, Symposia—Parts A, B, C, D, Hamamatsu, Japan, 24–29 July 2011
(
ASME
,
2011
).
45.
R. N.
Meroney
,
M.
Pavageau
,
S.
Rafailidis
, and
M.
Schatzmann
, “
Study of line source characteristics for 2-D physical modelling of pollutant dispersion in street canyons
,”
J. Wind Eng. Ind. Aerodyn.
62
,
37
(
1996
).
46.
W. G.
Hoydysh
,
R. A.
Griffiths
, and
Y.
Ogawa
, “
A scale model study of the dispersion of pollution in street canyons
,” in
Proceedings of the 67th Annual Meeting of the Air Pollution Control Association
,
Denver, CO, 9–13 June 1974, APCA Paper No. 74-157
.
47.
W. H.
Snyder
, “
Similarity criteria for the application of fluid models to the study of air pollution meteorology
,”
Bound.-Layer Meteorol.
3
,
113
(
1972
).
48.
T. R.
Oke
,
Boundary Layer Climates
(
Routledge
,
London
,
1988
).
49.
T. R.
Oke
, “
Street design and urban canopy layer climate
,”
Energy Build.
11
,
103
(
1988
).
50.
M. R.
Raupach
, “
A wind-tunnel study of turbulent flow close to regularly arrayed roughness element
,”
Boundary-Layer Meteorol.
18
,
373
(
1980
).
51.
R. W.
Macdonald
, “
Modelling the mean velocity profile in the urban canopy layer
,”
Boundary-Layer Meteorol.
97
,
25
(
2000
).
52.
S.
Oikawa
and
Y.
Meng
, “
Turbulence characteristics and organized motion in a suburban roughness sublayer
,”
Bound.-Layer Meteorol.
74
,
289
(
1995
).
You do not currently have access to this content.