Shear-layer driven open cavity flows are known to exhibit strong self-sustained oscillations of the shear-layer. Over some range of the control parameters, a competition between two modes of oscillations of the shear layer can occur. We apply both Proper Orthogonal Decomposition and Dynamic Mode Decomposition to experimental two-dimensional two-components time and spaced velocity fields of an incompressible open cavity flow, in a regime of mode competition. We show that, although proper orthogonal decomposition successes in identifying salient features of the flow, it fails at identifying the spatial coherent structures associated with dominant frequencies of the shear-layer oscillations. On the contrary, we show that, as dynamic mode decomposition is devoted to identify spatial coherent structures associated with clearly defined frequency channels, it is well suited for investigating coherent structures in intermittent regimes. We consider the velocity divergence field, in order to identify spanwise coherent features of the flow. Finally, we show that both coherent structures in the inner-flow and in the shear-layer exhibit strong spanwise velocity gradients, and are therefore three-dimensional.

1.
J.
Lumley
, “
Coherent structures in turbulence
,”
Proc. Trans. Turbul.
1
,
215
242
(
1981
).
2.
L.
Sirovich
, “
Turbulence and the dynamics of coherent structures. I-coherent structures. II-symmetries and transformations. III-dynamics and scaling
,”
Quart. Appl. Math.
45
,
561
571
(
1987
).
3.
G.
Berkooz
,
P.
Holmes
, and
J.
Lumley
, “
The proper orthogonal decomposition in the analysis of turbulent flows
,”
Annu. Rev. Fluid Mech.
25
,
539
575
(
1993
).
4.
B.
Noack
and
H.
Eckelmann
, “
A low-dimensional galerkin method for the three-dimensional flow around a circular cylinder
,”
Phys. Fluids
6
,
124
143
(
1994
).
5.
M.
Bergmann
,
L.
Cordier
, and
J.
Brancher
, “
Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model
,”
Phys. Fluids
17
(
9
),
097101
(
2005
).
6.
J.
Jeong
and
F.
Hussain
, “
On the identification of a vortex
,”
J. Fluid. Mech.
285
(
69
),
69
94
(
1995
).
7.
J.
Hunt
,
A.
Wray
, and
P.
Moin
, “
Eddies, streams, and convergence zones in turbulent flows
,” in
Proceedings of the 1988 Summer Program
(
Stanford N.A.S.A. Centre for Turbulence Research
,
1988
).
8.
Z.
Pouransari
,
M.
Speetjens
, and
J.
Clercx
, “
Formation of coherent structures by fluid inertia in three-dimensional laminar flows
,”
J. Fluid Mech.
654
,
5
34
(
2010
).
9.
P.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid. Mech.
656
,
5
28
(
2010
).
10.
C. W.
Rowley
,
I.
Mezić
,
S.
Bagheri
,
P.
Schlatter
, and
D. S.
Henningson
, “
Spectral analysis of nonlinear flows
,”
J. Fluid. Mech.
641
,
115
127
(
2009
).
11.
A.
Seena
and
J.
Sung
, “
Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations
,”
Int. J. Heat Fluid Flow
32
(
6
),
1098
1110
(
2011
).
12.
P.
Schmid
, “
Application of the dynamic mode decomposition to experimental data
,”
Exp. Fluids
50
(
4
),
1123
1130
(
2011
).
13.
O.
Semeraro
,
G.
Bellani
, and
F.
Lundell
, “
Analysis of time-resolved PIV measurements of a confined turbulent jet using POD and Koopman modes
,”
Exp. Fluids
53
(
5
),
1203
1220
(
2012
).
14.
K.
Chen
,
J.
Tu
, and
C.
Rowley
, “
Variants of dynamic mode decomposition: Boundary condition, Koopman, and Fourier analyses
,”
J. Nonlinear Sci.
22
,
887
915
(
2012
).
15.
F.
Guéniat
,
L.
Pastur
, and
L.
Mathelin
, “
Snapshot-based flow analysis with arbitrary sampling
,”
Proc. IUTAM
10
,
25
99
(
2014
).
16.
F.
Guéniat
, “
Identification de structures cohérentes dans des écoulements fluides et interfaces homme-machine pour l'exploration et la visualisation interactive de données scientifiques
,” Ph.D. thesis,
University of Paris Sud
,
2013
.
17.
I.
Mezić
, “
Spectral properties of dynamical systems, model reduction and decompositions
,”
Nonlin. Dyn.
41
,
309
325
(
2005
).
18.
I.
Mezić
, “
Analysis of fluid flows via spectral properties of the Koopman operator
,”
Annu. Rev. Fluid Mech.
45
,
357
378
(
2013
).
19.
D.
Rockwell
and
E.
Naudascher
, “
Self-sustained oscillations of impinging free shear layers
,”
Annu. Rev. Fluid Mech.
11
,
67
94
(
1979
).
20.
D.
Rockwell
and
C.
Knisely
, “
Observations of the three dimensional nature of unstable flow past a cavity
,”
Phys. Fluids
23
,
425
431
(
1980
).
21.
D.
Rockwell
, “
Oscillations of impinging shear layers
,”
AIAA J.
21
(
5
),
645
664
(
1983
).
22.
M.
Kegerise
,
E.
Spina
,
S.
Garg
, and
L.
Cattafesta
, “
Mode-switching and nonlinear effects in compressible flow over a cavity
,”
Phys. Fluids
16
,
678
687
(
2004
).
23.
L.
Pastur
,
F.
Lusseyran
,
T.
Faure
,
Y.
Fraigneau
,
R.
Pethieu
, and
P.
Debesse
, “
Quantifying the non-linear mode competition in the flow over an open cavity at medium Reynolds number
,”
Exp. Fluids
44
,
597
608
(
2008
).
24.
P.
Holmes
,
J.
Lumley
, and
G.
Berkooz
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
(
Cambridge University Press
,
1998
).
25.
G.
Kerschen
,
J.
Golinval
,
A.
Vakakis
, and
L.
Bergman
, “
The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: An overview
,”
Nonlin. Dyn.
41
(
1–3
),
147
169
(
2005
).
26.
D.
Rempfer
and
H.
Fasel
, “
Evolution of three-dimensional coherent structures in a flat-plate boundary layer
,”
J. Fluid. Mech.
260
,
351
375
(
1994
).
27.
X.
Gloerfelt
,
C.
Bogey
, and
C.
Bailly
, “
Numerical evidence of mode switching in the flow-induced oscillations by a cavity
,”
Int. J. Aero.
2
(
2
),
193
217
(
2003
).
28.
J.
Basley
,
L. R.
Pastur
,
F.
Lusseyran
,
T. M.
Faure
, and
N.
Delprat
, “
Experimental investigation of global structures in an incompressible cavity flow using time-resolved PIV
,”
Exp. Fluids
50
,
905
918
(
2010
).
29.
J.
Basley
, “
An experimental investigation on waves and coherent structures in a three-dimensional open cavity flow
,” Ph.D. thesis,
University of Paris Sud
,
2012
.
30.
T.
Faure
,
P.
Adrianos
,
F.
Lusseyran
, and
L.
Pastur
, “
Visualizations of the flow inside an open cavity at medium range Reynolds numbers
,”
Exp. Fluids
42
,
169
184
(
2007
).
31.
T.
Faure
,
L.
Pastur
,
F.
Lusseyran
,
Y.
Fraigneau
, and
D.
Bisch
, “
Three-dimensional centrifugal instabilities development inside a parallelepipedic open cavity of various shape
,”
Exp. Fluids
47
(
3
),
395
410
(
2009
).
32.
G. A.
Brès
and
T.
Colonius
, “
Three-dimensional instabilities in compressible flow over open cavities
,”
J. Fluid Mech.
599
,
309
339
(
2008
).
33.
M. D.
Neary
and
K. D.
Stephanoff
, “
Shear-layer-driven transition in a rectangular cavity
,”
Phys. Fluids
30
,
2936
2946
(
1987
).
34.
J.
Basley
,
L.
Pastur
,
N.
Delprat
, and
F.
Lusseyran
, “
Space-time aspects of a three-dimensional multi-modulated open cavity flow
,”
Phys. Fluids
25
(
6
),
064105
(
2013
).
You do not currently have access to this content.