In this paper, the viscous fingering of miscible flow displacements in an anisotropic porous media is investigated for the first time. The effect of anisotropic permeability and dispersion tensor on the generation, form and growth rate of finger-like patterns, is studied using both linear stability analysis and computational fluid dynamics (CFD). The linear stability analysis is performed using the quasi-steady state approximation and six order shooting method to predict the growth rate of the disturbance in the flow. It is found that the flow is more stabilized when the ratio of the longitudinal to transverse anisotropic permeability is increased and longitudinal to transverse anisotropic dispersion is decreased. In CFD simulation, Hartley transformation (as a spectral method) and fourth-order Adams-Bashforth technique is used to solve the governing equations. It is shown that anisotropic permeability and dispersion have significant effects on the development of the fingers and also on the mechanisms of interactions between neighboring fingers. The development of the finger structures is discussed using concentration contours and diagrams of transversely average concentration, mixing length, and sweep efficiency for different anisotropic scenarios.

1.
G. M.
Homsy
, “
Viscous fingering in porous media
,”
Annl. Rev. Fluid Mech.
19
,
271
(
1987
).
2.
R. M.
Butler
,
G. S.
Mcnab
, and
H. Y.
Lo
, “
Theoretical studies on the gravity drainage of heavy oil during in-situ steam heating
,
Can. J. Chem. Eng.
59
,
455
(
1981
).
3.
H.
Hassanzadeh
,
M.
Pooladi-Darvish
, and
D. W.
Keith
, “
Stability of a fluid in a horizontal saturated porous layer: Effect of non-linear concentration profile, initial, and boundary conditions
,”
Transp. Porous Med.
65
,
193
(
2006
).
4.
S.
Berg
,
S.
Oedai
,
A. J.
Landman
,
N.
Brussee
,
M.
Boele
,
R.
Valdez
, and
K.
van Gelder
, “
Miscible displacement of oils by carbon disulfide in porous media: Experiments and analysis
,”
Phys. Fluids
22
,
113102
(
2010
).
5.
A.
De Wit
,
Y.
Bertho
, and
M.
Martin
, “
Viscous fingering of miscible slices
,”
Phys. Fluids
17
,
054114
(
2005
).
6.
K. J.
Mayfield
,
R.
Andrew Shalliker
,
H. J.
Catchpoole
,
A. P.
Sweeney
,
V.
Wong
, and
G.
Guiochon
, “
Viscous fingering induced flow instability in multidimensional liquid chromatography
,”
J. Chromatograp. A
1080
,
124
(
2005
).
7.
M.
Mishra
,
M.
Martin
, and
A.
De Wit
, “
Influence of miscible viscous fingering on spreading of solutes in porous media
,”
Phys. Fluids
21
,
083101
(
2009
).
8.
K. R.
Bhaskar
,
P.
Garik
,
B. S.
Turner
,
J. D.
Bradley
,
R.
Bansil
,
H. E.
Stanley
, and
J. T.
LaMont
, “
Viscous fingering of HCI through gastric mucin
,”
Nature (London)
360
,
458
(
1992
).
9.
S.
Hill
and
F. Inst.
P
, “
Channeling in packed columns
,”
Chem. Eng. Sci.
1
,
247
(
1952
).
10.
R. L.
Chuoke
,
P.
van Meurs
, and
C.
van der Poel
, “
The instability of slow, immiscible, viscous liquid-liquid displacements in permeable media
,”
Soc. Pet. Eng.
216
,
188
(
1959
).
11.
D.
Bensimon
,
L. P.
Kadanoff
,
S.
Liang
,
B. I.
Shraiman
, and
C.
Tang
, “
Viscous flows in two dimensions
,”
Rev. Mod. Phys.
58
,
977
(
1986
).
12.
R. L.
Slobod
and
B. H.
Caudle
, “
X-ray shadowgraph studies of areal sweepout efficiencies
,”
Soc. Pet. Eng.
195
,
265
(
1952
).
13.
D. W.
Peaceman
and
H. H.
Rachford
 Jr.
, “
Numerical calculation of multidimensional miscible displacement
,”
Soc. Pet. Eng.
2
,
327
(
1962
).
14.
M. A.
Christie
, “
High-resolution simulation of unstable flows in porous media
,”
Soc. Pet. Eng.
4
,
297
(
1989
).
15.
C. T.
Tan
and
G. M.
Homsy
, “
Simulation of nonlinear viscous fingering in miscible displacement
,”
Phys. Fluids
31
,
1330
(
1988
).
16.
W. B.
Zimmerman
and
G. M.
Homsy
, “
Nonlinear viscous fingering in miscible displacement with anisotropic dispersion
,”
Phys. Fluids A
3
,
1859
(
1991
).
17.
W. B.
Zimmerman
and
G. M.
Homsy
, “
Three‐dimensional viscous fingering: A numerical study
,”
Phys. Fluids A
4
,
1901
(
1992
).
18.
M.
Mishra
,
M.
Martin
, and
A.
De Wit
, “
Influence of miscible viscous fingering with negative log-mobility ratio on spreading of adsorbed analytes
,”
Chem. Eng. Sci.
65
,
2392
(
2010
).
19.
M.
Mishra
,
M.
Martin
, and
A.
De Wit
, “
Miscible viscous fingering with linear adsorption on the porous matrix
,”
Phys. Fluids
19
,
073101
(
2007
).
20.
K.
Ghesmat
and
J.
Azaiez
, “
Viscous fingering instability in porous media: Effect of anisotropic velocity-dependent dispersion tensor
,”
Transp. Porous Media
73
,
297
(
2008
).
21.
J.
Azaiez
and
B.
Singh
, “
Stability of miscible displacements of shear thinning fluids in a Hele-Shaw cell
,”
Phys. Fluids
14
,
1557
(
2002
).
22.
A.
De Wit
and
G. M.
Homsy
, “
Viscous fingering in periodically heterogeneous porous media. I. Formulation and linear instability
,”
J. Chem. Phys.
107
,
9609
(
1997
).
23.
A.
De Wit
and
G. M.
Homsy
, “
Viscous fingering in periodically heterogeneous porous media. II. Numerical simulations
,”
J. Chem. Phys.
107
,
9619
(
1997
).
24.
C. T.
Tan
and
G. M.
Homsy
, “
Viscous fingering with permeability heterogeneity
,”
Phys. Fluids A
4
,
1099
(
1992
).
25.
E. J.
Fernandez
,
C. A.
Grotegut
,
G. W.
Braun
,
K. J.
Kirschner
,
J. R.
Staudaher
,
M. L.
Dickson
, and
V. L.
Fernandez
, “
The effects of permeability heterogeneity on miscible viscous fingering: A three‐dimensional magnetic resonance imaging analysis
,”
Phys. Fluids
7
,
468
(
1995
).
26.
V.
Horvath
,
T.
Vicsek
, and
J.
Kertesz
, “
Viscous fingering with imposed uniaxial anisotropy
,”
Phys. Rev. A
35
,
2353
(
1987
).
27.
M.
Kawaguchi
,
Y.
Hibino
, and
T.
Kato
, “
Anisotropy effects of Hele-Shaw cells on viscous fingering instability in dilute polymer solutions
,”
Phys. Rev. E
64
,
051806
(
2001
).
28.
K. J.
Hsu
, U.S. patent application PCT/US1999/026352 (6 July
2000
).
29.
W. B.
Zimmerman
and
G. M.
Homsy
, “
Viscous fingering in miscible displacements: Unification of effects of viscosity contrast, anisotropic dispersion, and velocity dependence of dispersion on nonlinear finger propagation
,”
Phys. Fluids A
4
,
2348
(
1992
).
30.
O.
Manickam
and
G. M.
Homsy
, “
Stability of miscible displacements in porous media with nonmonotonic viscosity profiles
,”
Phys. Fluids A
5
,
1356
(
1993
).
31.
O.
Manickam
and
G. M.
Homsy
, “
Fingering instabilities in vertical miscible displacement flows in porous media
,”
J. Fluid Mech.
288
,
75
(
1995
).
32.
D. E.
Moissis
,
C. A.
Miller
, and
M. F.
Wheeler
, in
Proceedings of the Symposium on Numerical Simulation in Oil Recovery on Numerical Simulation in Oil Recovery
(
Springer-Verlag
,
New York
,
1988
), pp.
227
247
.
33.
H. A.
Tchelepi
, “
Viscous fingering, gravity segregation and permeability heterogeneity in two-dimensional and three dimensional flows
,” Ph.D. thesis (
Stanford University
,
1994
).
34.
M. Y.
Hussaini
and
T. A.
Zang
, “
Spectral methods in fluid dynamics
,”
Annu. Rev. Fluid Mech.
19
,
339
(
1987
).
35.
R. N.
Bracewell
,
O.
Buneman
,
H.
Hao
, and
J.
Villasenor
, “
Fast two-dimensional Hartley transform
,”
Proc. IEEE
74
,
1282
(
1986
).
36.
C.
Tan
and
G.
Homsy
, “
Stability of miscible displacements in porous media: Rectilinear flow
,”
Phys. Fluids
29
,
3549
(
1986
).
37.
K. S.
Lee
, “
Effects of horizontal and vertical well patterns during waterflood in anisotropic reservoirs
,”
Geosyst. Eng.
13
,
1
(
2010
).
38.
J.
Bingyu
and
L.
Yubo
, “
Optimization of permeability tensor characteristics of anisotropic reservoir and well pattern parameters
,”
Tsinghua Sci. Technol.
5
,
564
(
2003
).
39.
R.
Meyer
and
F. F.
Krause
, “
Permeability anisotropy and heterogeneity of a sandstone reservoir analogue: An estuarine to shoreface depositional system in the Virgelle Member, Milk River Formation, Writing-on-Stone Provincial Park, southern Alberta
,”
Bull. Can. Pet. Geol.
54
,
301
(
2006
).
40.
M.
Mishra
,
M.
Martin
, and
A.
De Wit
, “
Differences in miscible viscous fingering of finite width slices with positive or negative log-mobility ratio
,”
Phys. Rev. E
78
,
066306
(
2008
).
41.
M. N.
Islam
and
J.
Azaiez
, “
Fully implicit finite difference pseudo-spectral method for simulating high mobility-ratio miscible displacements
,”
Intl. J. Num. Methods Fluids
47
,
161
(
2005
).
42.
A.
Rogerson
and
E.
Meiburg
, “
Numerical simulation of miscible displacement processes in porous media flows under gravity
,”
Phys. Fluids A
5
,
2644
(
1993
).
You do not currently have access to this content.