We analyse the cross-sectional evolution of an englacial meltwater conduit that contracts due to inward creep of the surrounding ice and expands due to melting. Making use of theoretical methods from free-boundary problems in Stokes flow and Hele–Shaw squeeze flow we construct an exact solution to the coupled problem of external viscous creep and internal heating, in which we adopt a Newtonian approximation for ice flow and an idealized uniform heat source in the conduit. This problem provides an interesting variant on standard free-boundary problems, coupling different internal and external problems through the kinematic condition at the interface. The boundary in the exact solution takes the form of an ellipse that may contract or expand (depending on the magnitudes of effective pressure and heating rate) around fixed focal points. Linear stability analysis reveals that without the melting this solution is unstable to perturbations in the shape. Melting can stabilize the interface unless the aspect ratio is too small; in that case, instabilities grow largest at the thin ends of the ellipse. The predictions are corroborated with numerical solutions using boundary integral techniques. Finally, a number of extensions to the idealized model are considered, showing that a contracting circular conduit is unstable to all modes of perturbation if melting occurs at a uniform rate around the boundary, or if the ice is modelled as a shear-thinning fluid.

1.
J. S.
Walder
, “
Röthlisberger channel theory: Its origins and consequences
,”
J. Glaciol.
56
(
200
),
1079
1086
(
2010
).
2.
J.
Glen
, “
Experiments on the deformation of ice
,”
J. Glaciol.
2
,
111
114
(
1952
).
3.
H.
Röthlisberger
, “
Water pressure in intra- and subglacial channels
,”
J. Glaciol.
11
,
177
204
(
1972
).
4.
C.
Schoof
and
I. J.
Hewitt
, “
Ice-sheet dynamics
,”
Annu. Rev. Fluid. Mech.
45
,
217
239
(
2013
).
5.
J. F.
Nye
, “
The flow law of ice from measurements in glacier tunnels, laboratory experiments and the Jungfraufirn borehole experiment
,”
Proc. R. Soc. London, Ser. A
219
,
477
489
(
1953
).
6.
C.
Schoof
, “
Ice-sheet acceleration driven by melt supply variability
,”
Nature (London)
468
,
803
806
(
2010
).
7.
S.
Pimentel
and
G. E.
Flowers
, “
A numerical study of hydrologically driven glacier dynamics and subglacial flooding
,”
Proc. R. London Soc. A
467
,
537
558
(
2011
).
8.
R. LeB.
Hooke
,
T.
Laumann
, and
J.
Kohler
, “
Subglacial water pressures and the shape of subglacial conduits
,”
J. Glaciol.
36
(
122
),
67
71
(
1990
).
9.
F. S. L.
Ng
, “
Mathematical modelling of subglacial drainage and erosion
,” Ph.D. thesis, St. Catherine's College,
Oxford University
,
1998
.
10.
P. M.
Cutler
, “
Modelling the evolution of subglacial tunnels due to varying water input
,”
J. Glaciol.
44
,
485
497
(
1998
).
11.
A. H.
Jarosch
and
M. T.
Gudmundsson
, “
A numerical model for meltwater channel evolution in glaciers
,”
Cryosphere
6
,
493
503
(
2012
).
12.
K. A.
Gillow
and
S. D.
Howison
, “
Bibliography of free and moving boundary problems in Hele–Shaw and Stokes flow
,” August
1998
, see http://people.maths.ox.ac.uk/howison/Hele-Shaw/.
13.
S.
Tanveer
and
G. L.
Vasconcelos
, “
Bubble breakup in two-dimensional Stokes flow
,”
Phys. Rev. Lett.
73
(
21
),
2845
2848
(
1994
).
14.
S.
Tanveer
and
G. L.
Vasconcelos
, “
Time-evolving bubbles in two-dimensional Stokes flow
,”
J. Fluid. Mech.
301
,
325
344
(
1995
).
15.
D.
Crowdy
and
M.
Siegel
, “
Exact solutions for the evolution of a bubble in Stokes flow: A Cauchy transform approach
,”
SIAM J. Appl. Math.
65
(
3
),
941
963
(
2005
).
16.
S. D.
Howison
,
A. A.
Lacey
, and
J. R.
Ockendon
, “
Hele–Shaw free-boundary problems with suction
,”
Q. J. Mech. Appl. Math.
41
,
183
193
(
1988
).
17.
V. M.
Entov
,
P. L.
Etingov
, and
D. Ya.
Kleinbock
, “
On nonlinear interface dynamics in Hele–Shaw flows
,”
Eur. J. Appl. Math.
6
(
5
),
399
420
(
1995
).
18.
M. J.
Shelley
,
F. R.
Tian
, and
K.
Wlodarski
, “
Hele–Shaw flow and pattern formation in a time-dependent gap
,”
Nonlinearity
10
(
6
),
1471
1495
(
1997
).
19.
D. G.
Crowdy
, “
Exact solutions to the unsteady two-phase Hele–Shaw problem
,”
Q. J. Mech. Appl. Math.
59
,
475
485
(
2006
).
20.
S.
Kida
, “
Motion of an elliptic vortex in a uniform shear flow
,”
J. Phys. Soc. Jpn.
50
,
3517
3520
(
1981
).
21.
B. A.
Bilby
and
M. L.
Kolbuszewski
, “
The finite deformation of an inhomogeneity in two-dimensional slow viscous incompressible flow
,”
Proc. R. Soc. London, Ser. A
355
,
335
353
(
1977
).
22.
S.
Betelú
,
R.
Gratton
, and
J.
Diez
, “
Observation of cusps during the levelling of free surfaces in viscous flows
,”
J. Fluid Mech.
377
,
137
149
(
1998
).
23.
C.
Pozrikidis
,
Boundary Integral and Singularity Methods for Linearized Viscous Flow
(
Cambridge University Press
,
Cambridge
,
1992
).
24.
C.
Pozrikidis
, “
Expansion of a compressible gas bubble in Stokes flow
,”
J. Fluid Mech.
442
,
171
189
(
2001
).
25.
C.
Pozrikidis
, “
Computation of the pressure inside bubbles and pores in Stokes flow
,”
J. Fluid Mech.
474
,
319
337
(
2003
).
26.
H.
Ockendon
and
J. R.
Ockendon
,
Viscous Flow
(
Cambridge University Press
,
Cambridge
,
1995
).
27.
J. F.
Nye
, “
Water flow in glaciers: Jökulhaups, tunnels and veins
,”
J. Glaciol.
17
(
76
),
181
207
(
1976
).
28.
J. D.
Gulley
,
D. I.
Benn
,
E.
Screaton
, and
J.
Martin
, “
Mechanisms of englacial conduit formation and their implications for subglacial recharge
,”
Q. Sci. Rev.
28
,
1984
1999
(
2009
).
29.
D. G.
Crowdy
, “
On a class of geometry-driven free boundary problems
,”
SIAM J. Appl. Math.
62
,
945
954
(
2002
).
You do not currently have access to this content.