This work examines the breakup of a single drop of various low viscosity fluids as it deforms in the presence of continuous horizontal air jet. Such a fragmentation typically occurs after the bulk liquid has disintegrated upon exiting the atomizer and is in the form of an ensemble of drops which undergo further breakup. The drop deformation and its eventual disintegration is important in evaluating the efficacy of a particular industrial process, be it combustion in automobile engines or pesticide spraying in agricultural applications. The interplay between competing influences of surface tension and aerodynamic disruptive forces is represented by the Weber number, We, and Ohnesorge number, Oh, and used to describe the breakup morphology. The breakup pattern considered in our study corresponds to that of a bag attached to a toroidal ring which occurs from ∼12 < We < ∼16. We aim to address several issues connected with this breakup process and their dependence on We and Oh which have been hitherto unexplored. The We boundary at which breakup begins is theoretically determined and the expression obtained, |$We = 12( {1 + {\raise0.7ex\hbox{2} \!\mathord{\left/ {\vphantom {2 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{3}}Oh^2 } )$|We=12(1+2/3Oh2), is found to match well with experimental data {[L.-P. Hsiang and G. M. Faeth, Int. J. Multiphase Flow21(4), 545560 (1995)] and [R. S. Brodkey, “Formation of drops and bubbles,” in The Phenomena of Fluid Motions (Addison-Wesley, Reading, 1967)]}. An exponential growth in the radial extent of the deformed drop and the streamline dimension of the bag is predicted by a theoretical model and confirmed by experimental findings. These quantities are observed to strongly depend on We. However, their dependence on Oh is weak.

1.
A. H.
Lefebvre
,
Atomization and Sprays
(
Hemisphere Publishing Corporation
,
New York
,
1989
).
2.
T. G.
Theofanous
, “
Aerobreakup of newtonian and viscoelastic drops
,”
Annu. Rev. Fluid Mech.
43
,
661
690
(
2011
).
3.
W. H.
Chou
and
G. M.
Faeth
, “
Temporal properties of secondary drop breakup in the bag breakup regime
,”
Int. J. Multiphase Flow
24
(
6
),
889
912
(
1998
).
4.
L. P.
Hsiang
and
G. M.
Faeth
, “
Drop deformation and breakup due to shock wave and steady disturbances
,”
Int. J. Multiphase Flow
21
(
4
),
545
560
(
1995
).
5.
L. P.
Hsiang
and
G. M.
Faeth
, “
Near limit drop deformation and breakup
,”
Int. J. Multiphase Flow
18
(
5
),
635
652
(
1992
).
6.
L. P.
Hsiang
and
G. M.
Faeth
, “
Drop properties after secondary breakup
,”
Int. J. Multiphase Flow
19
(
5
),
721
735
(
1993
).
7.
A.
Wierzba
and
K.
Takayama
, “
Experimental investigation of the aerodynamic breakup of liquid drops
,”
AIAA J.
26
(
11
),
1329
1335
(
1988
).
8.
Z.
Dai
and
G. M.
Faeth
, “
Temporal properties of secondary drop breakup in the multimode breakup regime
,”
Int. J. Multiphase Flow
27
(
2
),
217
236
(
2001
).
9.
E.
Villermaux
and
B.
Bossa
, “
Single-drop fragmentation determines size distribution of raindrops
,”
Nat. Phys.
5
,
697
702
(
2009
).
10.
W. R.
Lane
, “
Shatter of drops in streams of air
,”
Ind. Eng. Chem.
43
,
1312
1317
(
1951
).
11.
K. N.
Dodd
, “
On the disintegration of water drops in an airstream
,”
J. Fluid Mech.
9
(
2
),
175
182
(
1960
).
12.
A. K.
Flock
,
D. R.
Guildenbecher
,
J.
Chen
,
P. E.
Sojka
, and
H.-J.
Bauer
, “
Experimental statistics of droplet trajectory and air flow during aerodynamic fragmentation of liquid drops
,”
Int. J. Multiphase Flow
47
,
37
49
(
2012
).
13.
S. A.
Krzeczkowski
, “
Measurement of liquid droplet disintegration mechanism
,”
Int. J. Multiphase Flow
6
,
227
239
(
1980
).
14.
J. O.
Hinze
, “
Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes
,”
AIChE J.
1
(
3
),
289
295
(
1955
).
15.
X. K.
Cao
,
Z. G.
Sun
,
W. F.
Li
,
H. F.
Liu
, and
Z. H.
Yu
, “
A new breakup regime of liquid drops identified in a continuous and uniform air jet flow
,”
Phys. Fluids
19
(
5
),
057103
(
2007
).
16.
H.
Zhao
,
H. F.
Liu
,
W. F.
Li
, and
J. L.
Xu
, “
Morphological classification of low viscosity drop bag breakup in a continuous air jet stream
,”
Phys. Fluids
22
,
114103
(
2010
).
17.
H.
Zhao
,
H. F.
Liu
,
X. K.
Cao
,
W. F.
Li
, and
J. L.
Xu
, “
Breakup characteristics of liquid drops in bag regime by a continuous and uniform air jet flow
,”
Int. J. Multiphase Flow
37
(
3
),
530
534
(
2011
).
18.
H.
Zhao
,
H. F.
Liu
,
X. K.
Cao
, and
W. F.
Li
, “
Experimental study of drop size distribution in the bag breakup regime
,”
Ind. Eng. Chem. Res.
50
,
9767
9773
(
2011
).
19.
H.
Zhao
,
H. F.
Liu
,
J. L.
Xu
, and
W. F.
Li
, “
Secondary breakup of coal water slurry drops
,”
Phys. Fluids
23
,
113101
(
2011
).
20.
L.
Opfer
,
I. V.
Roisman
,
J.
Venzmer
,
M.
Klostermann
, and
C.
Tropea
, “
Droplet-air collision dynamics: Evolution of the film thickness
,”
Phys. Rev. E
89
(
1
),
013023
1
0130231
6
(
2014
).
21.
Z.
Liu
and
R. D.
Reitz
, “
An analysis of the distortion and breakup mechanisms of high speed liquid drops
,”
Int. J. Multiphase Flow
23
(
4
),
631
650
(
1997
).
22.
D. R.
Guildenbecher
,
C.
López-Rivera
, and
P. E.
Sojka
, “
Secondary atomization
,”
Exp. Fluids
46
,
371
402
(
2009
).
23.
P.
Lenard
,
Über Regen. Meteorol. Z.
6
,
249
262
(
1904
).
24.
W. D.
Flower
, “
The terminal velocity of drops
,”
Proc. Phys. Soc. London
40
,
167
176
(
1927
).
25.
J. E.
Mc Donald
, “
The shape and aerodynamics of large drops
,”
J. Meteor.
11
,
478
494
(
1954
).
26.
C.
Chryssakis
and
D. N.
Assanis
, “
A unified fuel spray breakup model for internal combustion engine applications
,”
Atom. Sprays
18
(
5
),
375
426
(
2008
).
27.
C. L.
Ng
,
R.
Sankarakrishnan
, and
K. A.
Sallam
, “
Bag breakup of nonturbulent liquid jets in crossflow
,”
Int. J. Multiphase Flow
34
(
3
),
241
259
(
2008
).
28.
B. E.
Scharfman
and
A. H.
Techet
, “
Bag instabilities
,”
Phys. Fluids
24
(
9
),
091112
1
091112
2
(
2012
).
29.
B. E.
Gelfand
, “
Droplet breakup phenomena in flows with velocity lag
,”
Prog. Energy Combust. Sci.
22
(
3
),
201
265
(
1996
).
30.
R. S.
Brodkey
, “
Formation of drops and bubbles
,”
The Phenomena of Fluid Motions
(
Addison-Wesley
,
Reading
,
1967
).
31.
M.
Pilch
and
C. A.
Erdman
, “
Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop
,”
Int. J. Multiphase Flow
13
(
6
),
741
757
(
1987
).
32.
R. D.
Cohen
, “
Effect of viscosity on drop breakup
,”
Int. J. Multiphase Flow
20
(
1
),
211
216
(
1994
).
33.
A.
Tarnogrodzki
, “
Theoretical prediction of the critical Weber number
,”
Int. J. Multiphase Flow
19
(
3
),
329
336
(
1993
).
34.
A.
Tarnogrodzki
, “
Theory of free fall breakup of large drops
,”
Int. J. Mech. Sci.
43
(
4
),
883
893
(
2001
).
35.
M.
Jalaal
and
K.
Mehravaran
, “
Fragmentation of falling liquid droplets in bag breakup mode
,”
Int. J. Multiphase Flow
47
,
115
132
(
2012
).
36.
M.
Jalaal
and
K.
Mehravaran
, “
Transient growth of droplet instabilities in a stream
,”
Phys. Fluids
26
(
1
),
012101
(
2014
).
37.
E. K.
Poon
,
S.
Quan
,
J.
Lou
,
M.
Giacobello
, and
A. S.
Ooi
, “
Dynamics of a deformable, transversely rotating droplet released into a uniform flow
,”
J. Fluid Mech.
684
,
227
250
(
2011
).
38.
M.
Wu
,
T.
Cubaud
, and
C. M.
Ho
, “
Scaling law in liquid drop coalescence driven by surface tension
,”
Phys. Fluids
16
(
7
),
L51
L54
(
2004
).
39.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
London
,
1976
).
40.
R. W.
Fox
,
A. T.
McDonald
, and
P. J.
Pritchard
,
Introduction to Fluid Mechanics
(
John Wiley & Sons
,
New York
,
1998
), Vol.
2
.
41.
M.
Rodriíguez
,
M.
Galán
,
M. J.
Munñoz
, and
R.
Martin
, “
Viscosity of triglycerides + alcohols from 278 to 313 K
,”
J. Chem. Eng. Data
39
,
102
105
(
1994
).
42.
Glycerine Producers' Association
, Physical Properties of Glycerine and Its Solutions (New York,
1963
).
43.
M. S.
Plesset
and
A.
Prosperetti
, “
Bubble dynamics and cavitation
,”
Annu. Rev. Fluid Mech.
9
,
145
85
(
1977
).
You do not currently have access to this content.