We examine the nanoscale behavior of an equilibrium three-phase contact line in the presence of long-ranged intermolecular forces by employing a statistical mechanics of fluids approach, namely, density functional theory (DFT) together with fundamental measure theory (FMT). This enables us to evaluate the predictive quality of effective Hamiltonian models in the vicinity of the contact line. In particular, we compare the results for mean field effective Hamiltonians with disjoining pressures defined through (i) the adsorption isotherm for a planar liquid film, and (ii) the normal force balance at the contact line. We find that the height profile obtained using (i) shows good agreement with the adsorption film thickness of the DFT-FMT equilibrium density profile in terms of maximal curvature and the behavior at large film heights. In contrast, we observe that while the height profile obtained by using (ii) satisfies basic sum rules, it shows little agreement with the adsorption film thickness of the DFT results. The results are verified for contact angles of 20°, 40°, and 60°.

1.
R.
Seemann
,
M.
Brinkmann
,
E. J.
Kramer
,
F. F.
Lange
, and
R.
Lipowsky
, “
Wetting morphologies at microstructured surfaces
,”
Proc. Natl. Acad. Sci. U.S.A.
102
,
1848
1852
(
2005
).
2.
M.
Rauscher
and
S.
Dietrich
, “
Wetting phenomena in nanofluidics
,”
Annu. Rev. Mater. Res.
38
,
143
172
(
2008
).
3.
O. E.
Jensen
and
J. B.
Grotberg
, “
Insoluble surfactant spreading on a thin viscous film: Shock evolution and film rupture
,”
J. Fluid Mech.
240
,
259
288
(
1992
).
4.
H.
Wong
,
I.
Fatt
, and
C. J.
Radke
, “
Deposition and thinning of the human tear film
,”
J. Colloid Interface Sci.
184
,
44
51
(
1996
).
5.
L. G.
MacDowell
, “
Computer simulation of interface potentials: Towards a first principle description of complex interfaces?
Eur. Phys. J. Spec. Top.
197
,
131
145
(
2011
).
6.
A. R.
Herring
and
J. R.
Henderson
, “
Simulation study of the disjoining pressure profile through a three-phase contact line
,”
J. Chem. Phys.
132
,
084702
(
2010
).
7.
S. K.
Das
and
K.
Binder
, “
Does Young's equation hold on the nanoscale? A Monte Carlo test for the binary Lennard-Jones fluid
,”
Europhys. Lett.
92
,
26006
(
2010
).
8.
T.
Werder
,
J. H.
Walther
,
R. L.
Jaffe
,
T.
Halicioglu
,
F.
Noca
, and
P.
Koumoutsakos
, “
Molecular dynamics simulation of contact angles of water droplets in carbon nanotubes
,”
Nano Lett.
1
,
697
702
(
2001
).
9.
N.
Tretyakov
,
M.
Müller
,
D.
Todorova
, and
U.
Thiele
, “
Parameter passing between molecular dynamics and continuum models for droplets on solid substrates: The static case
,”
J. Chem. Phys.
138
,
064905
(
2013
).
10.
R.
Evans
, “
The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids
,”
Adv. Phys.
28
,
143
200
(
1979
).
11.
J.
Wu
, “
Density functional theory for chemical engineering: From capillarity to soft materials
,”
AIChE J.
52
,
1169
1193
(
2006
).
12.
M. C.
Stewart
and
R.
Evans
, “
Wetting and drying at a curved substrate: Long-ranged forces
,”
Phys. Rev. E
71
,
011602
(
2005
).
13.
A.
Nold
,
A.
Malijevský
, and
S.
Kalliadasis
, “
Wetting on a spherical wall: Influence of liquid-gas interfacial properties
,”
Phys. Rev. E
84
,
021603
(
2011
).
14.
G. O.
Berim
and
E.
Ruckenstein
, “
Nanodrop on a nanorough solid surface: Density functional theory considerations
,”
J. Chem. Phys.
129
,
014708
(
2008
).
15.
E.
Ruckenstein
and
G. O.
Berim
, “
Microscopic description of a drop on a solid surface
,”
Adv. Colloid Interface Sci.
157
,
1
33
(
2010
).
16.
A.
Malijevský
and
A. O.
Parry
, “
Critical point wedge filling
,”
Phys. Rev. Lett.
110
,
166101
(
2013
).
17.
P.
Yatsyshin
,
N.
Savva
, and
S.
Kalliadasis
, “
Geometry-induced phase transition in fluids: Capillary prewetting
,”
Phys. Rev. E
87
,
020402
R
(
2013
).
18.
D.
Zhou
,
J.
Mi
, and
C.
Zhong
, “
Three-dimensional density functional study of heterogeneous nucleation of droplets on solid surfaces
,”
J. Phys. Chem. B
116
,
14100
14106
(
2012
).
19.
D.
Bonn
,
J.
Eggers
,
J.
Indekeu
,
J.
Meunier
, and
E.
Rolley
, “
Wetting and spreading
,”
Rev. Mod. Phys.
81
,
739
805
(
2009
).
20.
L.
Béguin
,
A.
Vernier
,
R.
Chicireanu
,
T.
Lahaye
, and
A.
Browaeys
, “
Direct measurement of the van der Waals interaction between two Rydberg atoms
,”
Phys. Rev. Lett.
110
,
263201
(
2013
).
21.
J. R.
Henderson
, “
Statistical mechanics of the disjoining pressure of a planar film
,”
Phys. Rev. E
72
,
051602
(
2005
).
22.
S.
Dietrich
, “
Wetting phenomena
,” in
Phase Transitions and Critical Phenomena
, edited by
C.
Domb
, and
J. L.
Lebowitz
(
Academic Press
,
London
,
1988
), Vol.
12
, Chap. 1, p.
2
.
23.
C.
Bauer
and
S.
Dietrich
, “
Wetting films on chemically heterogeneous substrates
,”
Phys. Rev. E
60
,
6919
6941
(
1999
).
24.
T.
Hofmann
,
M.
Tasinkevych
,
A.
Checco
,
E.
Dobisz
,
S.
Dietrich
, and
B. M.
Ocko
, “
Wetting of nanopatterned grooved surfaces
,”
Phys. Rev. Lett.
104
,
106102
(
2010
).
25.
A.
Pereira
and
S.
Kalliadasis
, “
Equilibrium gas-liquid-solid contact angle from density-functional theory
,”
J. Fluid Mech.
692
,
53
77
(
2012
).
26.
R.
Roth
, “
Fundamental measure theory for hard-sphere mixtures: A review
,”
J. Phys.: Condens. Matter
22
,
063102
(
2010
).
27.
R.-J. C.
Merath
, “
Microscopic calculation of line tensions
,” Ph.D. thesis (
Universität Stuttgart
,
2008
).
28.
R.
Lipowsky
and
M. E.
Fisher
, “
Scaling regimes and functional renormalization for wetting transitions
,”
Phys. Rev. B
36
,
2126
2141
(
1987
).
29.
L. V.
Mikheev
and
J. D.
Weeks
, “
Sum rules for interface Hamiltonians
,”
Physica A
177
,
495
504
(
1991
).
30.
B. V.
Derjaguin
, “
Some results from 50 years’ research on surface forces
,”
Surface Forces and Surfactant Systems
,
Progress in Colloid & Polymer Science
Vol.
74
(
Springer
,
Berlin
,
1987
), pp.
17
30
.
31.
B. V.
Derjaguin
, and
N. V.
Churaev
, “
Properties of water layers adjacent to interfaces
,” in
Fluid Interfacial Phenomena
, edited by
C. A.
Croxton
(
Wiley
,
New York
,
1986
), pp.
663
738
.
32.
A. N.
Frumkin
, “
Über die Erscheinungen der Benetzung und des Anhaftens von Bläschen. I
,”
Acta Physicochim. URSS
9
,
313
(
1938
).
33.
B. V.
Derjaguin
and
E.
Obuchov
,
Acta Physicochim. URSS
5
,
1
(
1936
).
34.
I. E.
Dzyaloshinskii
,
E. M.
Lifshitz
, and
L. P.
Pitaevskii
, “
General theory of van der Waals forces
,”
Sov. Phys. Uspekhi
4
,
153
(
1961
).
35.
J. R.
Henderson
, “
Disjoining pressure of planar adsorbed films
,”
Eur. Phys. J. Spec. Top.
197
,
115
124
(
2011
).
36.
L. G.
MacDowell
, “
Discussion notes on ‘Disjoining pressure of planar adsorbed films’, by J.R. Henderson
,”
Eur. Phys. J. Spec. Top.
197
,
149
150
(
2011
).
37.
J. R.
Henderson
, “
Discussion notes on “Computer simulation of interface potentials: Towards a first principle description of complex interfaces?,” by L. G. MacDowell
,”
Eur. Phys. J. Spec. Top.
197
,
147
148
(
2011
).
38.
J. R.
Henderson
, “
Discussion notes: Note continuing the discussion on the contact line problem
,”
Eur. Phys. J. Spec. Top.
197
,
129
130
(
2011
).
39.
N. D.
Mermin
, “
Thermal properties of the inhomogeneous electron gas
,”
Phys. Rev.
137
,
A1441
A1443
(
1965
).
40.
Y.
Rosenfeld
, “
Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing
,”
Phys. Rev. Lett.
63
,
980
983
(
1989
).
41.
J. A.
Barker
and
D.
Henderson
, “
Perturbation theory and equation of state for fluids. II. A successful theory of liquids
,”
J. Chem. Phys.
47
,
4714
4721
(
1967
).
42.
B.
Peng
and
Y.-X.
Yu
, “
A density functional theory for Lennard-Jones fluids in cylindrical pores and its applications to adsorption of nitrogen on MCM-41 materials
,”
Langmuir
24
,
12431
12439
(
2008
).
43.
A.
Michels
,
J.
Levelt
, and
W.
De Graaff
, “
Compressibility isotherms of argon at temperatures between −25 °C and −155 °C, and at densities up to 640 amagat (pressures up to 1050 atmospheres)
,”
Physica
24
,
659
671
(
1958
).
44.
A.
Trokhymchuk
and
J.
Alejandre
, “
Computer simulations of liquid/vapor interface in Lennard-Jones fluids: Some questions and answers
,”
J. Chem. Phys.
111
,
8510
8523
(
1999
).
45.
N. L.
Trefethen
,
Spectral Methods in MATLAB
(
SIAM
,
Philadelphia
,
2000
).
46.
J.
Shen
and
L.
Wang
, “
Some recent advances on spectral methods for unbounded domains
,”
Commun. Comput. Phys.
5
,
195
241
(
2009
).
47.
A. O.
Parry
,
C.
Rascón
,
N. R.
Bernardino
, and
J. M.
Romero-Enrique
, “
Derivation of a non-local interfacial Hamiltonian for short-ranged wetting: I. Double-parabola approximation
,”
J. Phys.: Condens. Matter
18
,
6433
(
2006
).
48.
B.
Dai
,
L. G.
Leal
, and
A.
Redondo
, “
Disjoining pressure for nonuniform thin films
,”
Phys. Rev. E
78
,
061602
(
2008
).
49.
J. R.
Henderson
, “
Statistical mechanical sum rules
,” in
Fundamentals of Inhomogeneous Fluids
, edited by
D.
Henderson
(
Dekker
,
New York
,
1992
), pp.
23
84
.
50.
A. J.
Archer
and
R.
Evans
, “
Relationship between local molecular field theory and density functional theory for non-uniform liquids
,”
J. Chem. Phys.
138
,
014502
(
2013
).
51.
R.
Evans
,
J. R.
Henderson
,
D. C.
Hoyle
,
A. O.
Parry
, and
Z. A.
Sabeur
, “
Asymptotic decay of liquid structure: Oscillatory liquid-vapour density profiles and the Fisher-Widom line
,”
Mol. Phys.
80
,
755
775
(
1993
).
52.
L. G.
MacDowell
,
J.
Benet
,
N. A.
Katcho
, and
J. M.
Palanco
, “
Disjoining pressure and the film-height-dependent surface tension of thin liquid films: New insight from capillary wave fluctuations
,”
Adv. Colloid Interface Sci.
206
,
150
171
(
2014
).
53.
N.
Savva
and
S.
Kalliadasis
, “
Two-dimensional droplet spreading over topographical substrates
,”
Phys. Fluids
21
,
092102
(
2009
).
54.
N.
Savva
,
S.
Kalliadasis
, and
G. A.
Pavliotis
, “
Two-dimensional droplet spreading over random topographical substrates
,”
Phys. Rev. Lett.
104
,
084501
(
2010
).
55.
N.
Savva
,
G. A.
Pavliotis
, and
S.
Kalliadasis
, “
Contact lines over random topographical substrates. Part 1. Statics
,”
J. Fluid Mech.
672
,
358
383
(
2011
).
56.
N.
Savva
,
G. A.
Pavliotis
, and
S.
Kalliadasis
, “
Contact lines over random topographical substrates. Part 2. Dynamics
,”
J. Fluid Mech.
672
,
384
410
(
2011
).
57.
R.
Vellingiri
,
N.
Savva
, and
S.
Kalliadasis
, “
Droplet spreading on chemically heterogeneous substrates
,”
Phys. Rev. E
84
,
036305
(
2011
).
58.
B. D.
Goddard
,
G. A.
Pavliotis
, and
S.
Kalliadasis
, “
The overdamped limit of dynamic density functional theory: Rigorous results
,”
Multiscale Model. Simul.
10
,
633
663
(
2012
).
59.
B. D.
Goddard
,
A.
Nold
,
N.
Savva
,
G. A.
Pavliotis
, and
S.
Kalliadasis
, “
General dynamical density functional theory for classical fluids
,”
Phys. Rev. Lett.
109
,
120603
(
2012
).
60.
B. D.
Goddard
,
A.
Nold
,
N.
Savva
,
P.
Yatsyshin
, and
S.
Kalliadasis
, “
Unification of dynamic density functional theory for colloidal fluids to include inertia and hydrodynamic interactions: derivation and numerical experiments
,”
J. Phys.: Condens. Matter
25
,
035101
(
2013
).
61.
B. D.
Goddard
,
A.
Nold
, and
S.
Kalliadasis
, “
Multi-species dynamical density functional theory
,”
J. Chem. Phys.
138
,
144904
(
2013
).
You do not currently have access to this content.