In his study of superfluid turbulence in the low-temperature limit, Svistunov [“Superfluid turbulence in the low-temperature limit,” Phys. Rev. B52, 3647 (1995)] derived a Hamiltonian equation for the self-induced motion of a vortex filament. Under the local induction approximation (LIA), the Svistunov formulation is equivalent to a nonlinear dispersive partial differential equation. In this paper, we consider a family of rotating vortex filament solutions for the LIA reduction of the Svistunov formulation, which we refer to as the 2D LIA (since it permits a potential formulation in terms of two of the three Cartesian coordinates). This class of solutions holds the well-known Hasimoto-type planar vortex filament [H. Hasimoto, “Motion of a vortex filament and its relation to elastica,” J. Phys. Soc. Jpn.31, 293 (1971)] as one reduction and helical solutions as another. More generally, we obtain solutions which are periodic in the space variable. A systematic analytical study of the behavior of such solutions is carried out. In the case where vortex filaments have small deviations from the axis of rotation, closed analytical forms of the filament solutions are given. A variety of numerical simulations are provided to demonstrate the wide range of rotating filament behaviors possible. Doing so, we are able to determine a number of vortex filament structures not previously studied. We find that the solution structure progresses from planar to helical, and then to more intricate and complex filament structures, possibly indicating the onset of superfluid turbulence.

1.
H. E.
Hall
and
W. F.
Vinen
, “
The rotation of liquid helium II. I. Experiments on the propagation of second sound in uniformly rotating helium II
,”
Proc. R. Soc. London A
238
,
204
(
1956
).
2.
H. E.
Hall
and
W. F.
Vinen
, “
The rotation of liquid helium II. II. The theory of mutual friction in uniformly rotating helium II
,”
Proc. R. Soc. London A
238
,
215
(
1956
).
3.
I. L.
Bekarevich
and
I. M.
Khalatnikov
, “
Phenomenological derivation of the equations of vortex motion in He II
,”
Sov. Phys. JETP
13
,
643
(
1961
).
4.
K. W.
Schwarz
, “
Three-dimensional vortex dynamics in superfluid 4He: Line-line and line-boundary interactions
,”
Phys. Rev. B
31
,
5782
(
1985
).
5.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Addison and Wesley
,
1959
).
6.
R. J.
Arms
and
F. R.
Hama
, “
Localized-induction concept on a curved vortex and motion of an elliptic vortex ring
,”
Phys. Fluids
8
,
553
(
1965
).
7.
L. S.
Da Rios
, “
Sul moto d'un liquido indefinite con un filetto vorticoso di forma qualunque
,”
Rend. Circ. Mat. Palermo
22
,
117
(
1906
).
8.
H.
Hasimoto
, “
A soliton on a vortex filament
,”
J. Fluid Mech.
51
,
477
(
1972
).
9.
S.
Kida
, “
A vortex filament moving without change of form
,”
J. Fluid Mech.
112
,
397
(
1981
).
10.
H.
Hasimoto
, “
Motion of a vortex filament and its relation to elastica
,”
J. Phys. Soc. Jpn.
31
,
293
(
1971
).
11.
S.
Kida
, “
Stability of a steady vortex filament
,”
J. Phys. Soc. Jpn.
51
,
1655
(
1982
).
12.
Y.
Fukumoto
, “
Stationary configurations of a vortex filament in background flows
,”
Proc. R. Soc. London A
453
,
1205
(
1997
).
13.
M.
Umeki
, “
A locally induced homoclinic motion of a vortex filament
,”
Theor. Comput. Fluid Dyn.
24
,
383
(
2010
).
14.
M.
Umeki
, “
A real-space representation of a locally induced vortex filament
,”
Theor. Appl. Mech. Jpn.
61
,
195
(
2013
).
15.
R. A.
Van Gorder
, “
Exact solution for the self-induced motion of a vortex filament in the arclength representation of the local induction approximation
,”
Phys. Rev. E
86
,
057301
(
2012
).
16.
R. A.
Van Gorder
, “
Scaling laws and accurate small-amplitude stationary solution for the motion of a planar vortex filament in the Cartesian form of the local induction approximation
,”
Phys. Rev. E
87
,
043203
(
2013
).
17.
G.
Boffetta
,
A.
Celani
,
D.
Dezzani
,
J.
Laurie
, and
S.
Nazarenko
, “
Modeling Kelvin wave cascades in superfluid helium
,”
J. Low Temp. Phys.
156
,
193
(
2009
).
18.
B.
Svistunov
, “
Superfluid turbulence in the low-temperature limit
,”
Phys. Rev. B
52
,
3647
(
1995
).
19.
E. B.
Sonin
, “
Dynamics of helical vortices and helical-vortex rings
,”
EPL
97
,
46002
(
2012
).
20.
B. K.
Shivamoggi
and
G. J. F.
van Heijst
, “
Motion of a vortex filament in the local induction approximation: Reformulation of the Da Rios-Betchov equations in the extrinsic filament coordinate space
,”
Phys. Lett. A
374
,
1742
(
2010
).
21.
R. A.
Van Gorder
, “
Motion of a vortex filament in the local induction approximation: A perturbative approach
,”
Theor. Comput. Fluid Dyn.
26
,
161
(
2012
).
22.
R. A.
Van Gorder
, “
Integrable stationary solution for the fully nonlinear local induction equation describing the motion of a vortex filament
,”
Theor. Comput. Fluid Dyn.
26
,
591
(
2012
).
23.
R. A.
Van Gorder
, “
Motion of a helical vortex filament in superfluid 4He under the extrinsic form of the local induction approximation
,”
Phys. Fluids
25
,
085101
(
2013
).
24.
N.
Hietala
and
R.
Hänninen
, “
Comment on ‘Motion of a helical vortex filament in superfluid 4He under the extrinsic form of the local induction approximation' [Phys. Fluids 25, 085101 (2013)]
,”
Phys. Fluids
26
,
019101
(
2014
).
25.
R. A.
Van Gorder
, “
Response to ‘Comment on ‘Motion of a helical vortex filament in superfluid 4He under the extrinsic form of the local induction approximation' [Phys. Fluids 26, 019101 (2014)]
,”
Phys. Fluids
26
,
019102
(
2014
).
26.
E. B.
Sonin
, “
Symmetry of Kelvin-wave dynamics and the Kelvin-wave cascade in the T = 0 superfluid turbulence
,”
Phys. Rev. B
85
,
104516
(
2012
).
27.
R. E.
Goldstein
and
D. M.
Petrich
, “
Solitons, Euler's equation, and vortex patch dynamics
,”
Phys. Rev. Lett.
69
,
555
(
1992
).
28.
J.
Langer
and
D. A.
Singer
, “
Lagrangian aspects of the Kirchhoff elastic rod
,”
SIAM Rev.
38
,
605
(
1996
).
29.
Y.
Fukumoto
and
M.
Miyajima
, “
The localized induction hierarchy and the Lund-Regge equation
,”
J. Phys. A
29
,
8025
(
1999
).
30.
C. F.
Barenghi
and
R. J.
Donnelly
, “
Vortex rings in classical and quantum systems
,”
Fluid Dyn. Res.
41
(
5
),
051401
(
2009
).
31.
R. L.
Ricca
,
D. C.
Samuels
, and
C. F.
Barenghi
, “
Evolution of vortex knots
,”
J. Fluid Mech.
391
,
29
(
1999
).
32.
M.
Kursa
,
K.
Bajer
, and
T.
Lipniacki
, “
Cascade of vortex loops initiated by a single reconnection of quantum vortices
,”
Phys. Rev. B
83
(
1
),
014515
(
2011
).
33.
D.
Kleckner
and
W. T.
Irvine
, “
Creation and dynamics of knotted vortices
,”
Nature Phys.
9
(
4
),
253
(
2013
).
34.
T.
Lipniacki
, “
Shape-preserving solutions for quantum vortex motion under localized induction approximation
,”
Phys. Fluids
15
,
1381
(
2003
).
35.
T.
Lipniacki
, “
Quasi-static solutions for quantum vortex motion under the localized induction approximation
,”
J. Fluid Mech.
477
,
321
(
2003
).
36.
R. A.
Van Gorder
, “
Self-similar vortex dynamics in superfluid 4He under the Cartesian representation of the Hall-Vinen model including superfluid friction
,”
Phys. Fluids
25
,
095105
(
2013
).
37.
R. A.
Van Gorder
, “
Quantum vortex dynamics under the tangent representation of the local induction approximation
,”
J. Fluid Mech.
740
,
5
(
2014
).
38.
S. E.
Widnall
, “
The stability of helical vortex filament
,”
J. Fluid Mech.
54
,
641
(
1972
).
39.
Y.
Fukumoto
and
T.
Miyazaki
, “
Three-dimensional distortions of a vortex filament with axial velocity
,”
J. Fluid Mech.
222
,
369
(
1991
).
40.
V. L.
Okulov
, “
On the stability of multiple helical vortices
,”
J. Fluid Mech.
521
,
319
(
2004
).
41.
R. A.
Van Gorder
, “
Orbital stability for rotating planar vortex filaments in the Cartesian and arclength forms of the local induction approximation
,”
J. Phys. Soc. Jpn.
82
,
094005
(
2013
).
42.
D. K.
Cheng
,
W. M.
Cromar
, and
R. J.
Donnelly
, “
Influence of an axial heat current on negative-ion trapping in rotating helium II
,”
Phys. Rev. Lett.
31
,
433
(
1973
).
43.
W. I.
Glaberson
,
W. W.
Johnson
, and
R. M.
Ostermeier
, “
Instability of a vortex array in He II
,”
Phys. Rev. Lett.
33
,
1197
(
1974
).
44.
R. M.
Ostermeier
and
W. I.
Glaberson
, “
Instability of vortex lines in the presence of axial normal fluid flow
,”
J. Low Temp. Phys.
21
,
191
(
1975
).
You do not currently have access to this content.