The interaction of closely spaced microbubbles (MBs) exposed to a transient external pressure field is relevant for a variety of industrial and medical applications. We present a computational framework employing an interface tracking approach to model the transient dynamics of multiple, interacting, insonated MBs in arbitrary settings. In particular, this technique allows studying the effects of mutual proximity, confinement, and variations in excitation amplitude on the translatory motion of pairs of differently sized MBs. Domains of mutual repulsion or attraction are observed for closely spaced MBs in the investigated range of excitation frequencies. The repulsion domain widens and shifts to lower frequencies with increasing excitation pressure amplitude. When the MBs are confined in rigid tubes of decreasing diameters, we observe a shift of the translatory patterns towards lower frequencies, accompanied by a change in relative strength of the two translation modes. This effect is correlated to a decrease of the resonance frequency due to confinement which causes changes in oscillation amplitude and phase shift between the bubble vibrations. Coupling to the viscous host liquid gives rise to phenomena such as collective MB drift, non-symmetric attraction or repulsion, and reversal of translation direction. A system comprising six MBs inside a narrow tube highlights the potential of the computational framework to treat complex setups with multiple bubbles.

1.
T. J.
Bulat
, “
Macrosonics in Industry: 3. Ultrasonic Cleaning
,”
Ultrasonics
12
(
2
),
59
68
(
1974
).
2.
G. W.
Gale
and
A. A.
Busnaina
, “
Removal of particulate contaminants using ultrasonics and megasonics: A review
,”
Particul. Sci. Technol.
13
(
3–4
),
197
211
(
1995
).
3.
L.
Jatzwauk
,
H.
Schone
, and
H.
Pietsch
, “
How to improve instrument disinfection by ultrasound
,”
J. Hosp. Infect.
48
,
S80
S83
(
2001
).
4.
T.
Nishikawa
,
A.
Yoshida
,
A.
Khanal
,
M.
Habu
,
I.
Yoshioka
,
K.
Toyoshima
,
T.
Takehara
,
T.
Nishihara
,
K.
Tachibana
, and
K.
Tominaga
, “
A study of the efficacy of ultrasonic waves in removing biofilms
,”
Gerodontology
27
(
3
),
199
206
(
2010
).
5.
E.
Stride
and
N.
Saffari
, “
Microbubble ultrasound contrast agents: A review
,”
P I Mech. Eng. H
217
(
H6
),
429
447
(
2003
).
6.
K.
Ferrara
,
R.
Pollard
, and
M.
Borden
, “
Ultrasound microbubble contrast agents: Fundamentals and application to gene and drug delivery
,”
Annu. Rev. Biomed. Eng.
9
,
415
447
(
2007
).
7.
K.
Hynynen
,
N.
McDannold
,
N. A.
Sheikov
,
F. A.
Jolesz
, and
N.
Vykhodtseva
, “
Local and reversible blood-brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications
,”
Neuroimage
24
(
1
),
12
20
(
2005
).
8.
N.
McDannold
,
N.
Vykhodtseva
, and
K.
Hynynen
, “
Targeted disruption of the blood-brain barrier with focused ultrasound: Association with cavitation activity
,”
Phys. Med. Biol.
51
(
4
),
793
807
(
2006
).
9.
W.
Wiedemair
,
Z.
Tukovic
,
H.
Jasak
,
D.
Poulikakos
, and
V.
Kurtcuoglu
, “
On ultrasound-induced microbubble oscillation in a capillary blood vessel and its implications for the blood-brain barrier
,”
Phys. Med. Biol.
57
(
4
),
1019
1045
(
2012
).
10.
A.
Prosperetti
, “
Acoustic cavitation series. 2. Bubble phenomena in sound fields. 1
,”
Ultrasonics
22
(
2
),
69
78
(
1984
).
11.
M. S.
Plesset
and
A.
Prosperetti
, “
Bubble dynamics and cavitation
,”
Annu. Rev. Fluid Mech.
9
,
145
185
(
1977
).
12.
H. N.
Oguz
and
A.
Prosperetti
, “
The natural frequency of oscillation of gas bubbles in tubes
,”
J. Acoust. Soc. Am.
103
(
6
),
3301
3308
(
1998
).
13.
W.
Lauterborn
, “
Numerical investigation of nonlinear oscillations of gas-bubbles in liquids
,”
J. Acoust. Soc. Am.
59
(
2
),
283
293
(
1976
).
14.
N.
de Jong
,
P. J.
Frinking
,
A.
Bouakaz
,
M.
Goorden
,
T.
Schourmans
,
X.
Jingping
, and
F.
Mastik
, “
Optical imaging of contrast agent microbubbles in an ultrasound field with a 100-MHz camera
,”
Ultrasound Med. Biol.
26
(
3
),
487
492
(
2000
).
15.
C. T.
Chin
,
C.
Lancee
,
J.
Borsboom
,
F.
Mastik
,
M. E.
Frijlink
,
N.
de Jong
,
M.
Versluis
, and
D.
Lohse
, “
Brandaris 128: A digital 25 million frames per second camera with 128 highly sensitive frames
,”
Rev. Sci. Instrum.
74
(
12
),
5026
5034
(
2003
).
16.
V.
Bjerknes
, “
Research on the hydrodynamic force field
,”
Acta Math.
30
(
2
),
99
143
(
1906
).
17.
L. A.
Crum
, “
Bjerknes forces on bubbles in a stationary sound field
,”
J. Acoust. Soc. Am.
57
(
6
),
1363
1370
(
1975
).
18.
R.
Mettin
,
I.
Akhatov
,
U.
Parlitz
,
C. D.
Ohl
, and
W.
Lauterborn
, “
Bjerknes forces between small cavitation bubbles in a strong acoustic held
,”
Phys. Rev. E
56
(
3
),
2924
2931
(
1997
).
19.
H. N.
Oguz
and
A.
Prosperetti
, “
A generalization of the impulse and virial theorems with an application to bubble oscillations
,”
J. Fluid Mech.
218
,
143
162
(
1990
).
20.
N. A.
Pelekasis
,
A.
Gaki
,
A.
Doinikov
, and
J. A.
Tsamopoulos
, “
Secondary Bjerknes forces between two bubbles and the phenomenon of acoustic streamers
,”
J. Fluid Mech.
500
,
313
347
(
2004
).
21.
A. A.
Doinikov
, “
Bjerknes forces between two bubbles in a viscous fluid
,”
J. Acoust. Soc. Am.
106
(
6
),
3305
3312
(
1999
).
22.
M.
Ida
, “
A characteristic frequency of two mutually interacting gas bubbles in an acoustic field
,”
Phys. Lett. A
297
(
3–4
),
210
217
(
2002
).
23.
N. A.
Pelekasis
and
J. A.
Tsamopoulos
, “
Bjerknes forces between 2 bubbles. 2. Response to an oscillatory pressure field
,”
J. Fluid Mech.
254
,
501
527
(
1993
).
24.
A.
Harkin
,
T. J.
Kaper
, and
A.
Nadim
, “
Coupled pulsation and translation of two gas bubbles in a liquid
,”
J. Fluid Mech.
445
,
377
411
(
2001
).
25.
A. A.
Doinikov
, “
Acoustic radiation interparticle forces in a compressible fluid
,”
J. Fluid Mech.
444
,
1
21
(
2001
).
26.
A. A.
Doinikov
and
S. T.
Zavtrak
, “
On the mutual interaction of two gas bubbles in a sound field
,”
Phys. Fluids
7
(
8
),
1923
1930
(
1995
).
27.
A. A.
Doinikov
,
Bubble and Particle Dynamics in Acoustic Fields: Modern Trends and Applications
(
Research Signpost
,
2005
).
28.
V.
Garbin
,
D.
Cojoc
,
E.
Ferrari
,
E.
Di Fabrizio
,
M. L. J.
Overvelde
,
S. M.
van der Meer
,
N.
de Jong
,
D.
Lohse
, and
M.
Versluis
, “
Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and high-speed imaging
,”
Appl. Phys. Lett.
90
(
11
),
114103
(
2007
).
29.
P.
Marmottant
,
M.
Versluis
,
N.
de Jong
,
S.
Hilgenfeldt
, and
D.
Lohse
, “
High-speed imaging of an ultrasound-driven bubble in contact with a wall: “Narcissus” effect and resolved acoustic streaming
,”
Exp. Fluids
41
(
2
),
147
153
(
2006
).
30.
K.
Yoshida
,
T.
Fujikawa
, and
Y.
Watanabe
, “
Experimental investigation on reversal of secondary Bjerknes force between two bubbles in ultrasonic standing wave
,”
J. Acoust. Soc. Am.
130
(
1
),
135
144
(
2011
).
31.
P. L.
Marston
,
E. H.
Trinh
,
J.
Depew
, and
T. J.
Asaki
, “
Response of bubbles to ultrasonic radiation pressure: Dynamics in low gravity and shape oscillations
,”
Fluid Mec. A
23
,
343
353
(
1994
).
32.
A. A.
Doinikov
and
S. T.
Zavtrak
, “
On the “bubble grapes” induced by a sound field
,”
J. Acoust. Soc. Am.
99
(
6
),
3849
3850
(
1996
).
33.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of fluid (Vof) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
(
1
),
201
225
(
1981
).
34.
S.
Osher
and
J. A.
Sethian
, “
Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations
,”
J. Comput. Phys.
79
(
1
),
12
49
(
1988
).
35.
I. L.
Chern
,
J.
Glimm
,
O.
Mcbryan
,
B.
Plohr
, and
S.
Yaniv
, “
Front tracking for gas-dynamics
,”
J. Comput. Phys.
62
(
1
),
83
110
(
1986
).
36.
S. O.
Unverdi
and
G.
Tryggvason
, “
A front-tracking method for viscous, incompressible, multi-fluid flows
,”
J. Comput. Phys.
100
(
1
),
25
37
(
1992
).
37.
M. V.
Annaland
,
N. G.
Deen
, and
J. A. M.
Kuipers
, “
Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method
,”
Chem. Eng. Sci.
60
(
11
),
2999
3011
(
2005
).
38.
M. V.
Annaland
,
W.
Dijkhuizen
,
N. G.
Deen
, and
J. A. M.
Kuipers
, “
Numerical simulation of behavior of gas bubbles using a 3-D front-tracking method
,”
AICHE J.
52
(
1
),
99
110
(
2006
).
39.
A.
Tomiyama
,
S.
Takagi
, and
Y.
Matsumoto
, “
Numerical simulation of bubble flows using interface tracking and bubble tracking methods
,”
Comput. Exp. Meth.
1
,
191
206
(
1999
).
40.
D.
Gueyffier
,
J.
Li
,
A.
Nadim
,
R.
Scardovelli
, and
S.
Zaleski
, “
Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows
,”
J. Comput. Phys.
152
(
2
),
423
456
(
1999
).
41.
K. L.
Pan
and
Z. J.
Chen
, “
Simulation of bubble dynamics in a microchannel using a front-tracking method
,”
Comput. Math. Appl.
67
(
2
),
290
306
(
2014
).
42.
T.
Ye
,
W.
Shyy
, and
J. N.
Chung
, “
A fixed-grid, sharp-interface method for bubble dynamics and phase change
,”
J. Comput. Phys.
174
(
2
),
781
815
(
2001
).
43.
T.
Ye
and
J. L.
Bull
, “
Microbubble expansion in a flexible tube
,”
J. Biomech. Eng.-T Asme
128
(
4
),
554
563
(
2006
).
44.
N.
Hosseinkhah
and
K.
Hynynen
, “
A three-dimensional model of an ultrasound contrast agent gas bubble and its mechanical effects on microvessels
,”
Phys. Med. Biol.
57
(
3
),
785
808
(
2012
).
45.
A. M.
Zhang
,
X. L.
Yao
, and
L. H.
Feng
, “
The dynamic behavior of a gas bubble near a wall
,”
Ocean Eng.
36
(
3–4
),
295
305
(
2009
).
46.
C.-T.
Hsiao
and
G. L.
Chahine
, “
Numerical modeling of non-spherical response of therapeutic encapsulated microbubbles to ultrasound
,”
AIP Conf. Proc.
1359
(
1
),
443
448
(
2011
).
47.
N.
Mendez
and
R.
Gonzalez-Cinca
, “
Numerical study of bubble dynamics with the boundary element method
,”
J. Phys. Conf. Ser.
327
,
012028
(
2011
).
48.
T.
Kawamura
and
Y.
Kodama
, “
Numerical simulation method to resolve interactions between bubbles and turbulence
,”
Int. J. Heat Fluid
23
(
5
),
627
638
(
2002
).
49.
H. G.
Weller
,
G.
Tabor
,
H.
Jasak
, and
C.
Fureby
, “
A tensorial approach to computational continuum mechanics using object-oriented techniques
,”
Comput. Phys.
12
(
6
),
620
631
(
1998
).
50.
Z.
Tukovic
and
H.
Jasak
, “
A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow
,”
Comput. Fluids
55
,
70
84
(
2012
).
51.
T.
Szabo
,
Diagnostic Ultrasound Imaging: Inside Out
(
Academic Press
,
2004
).
52.
H.
Jasak
and
Z.
Tukovic
, “
Automatic mesh motion for the unstructured finite volume method
,”
Trans. Famena
30
(
2
),
1
18
(
2007
).
53.
I.
Demirdzic
and
M.
Peric
, “
Space conservation law in finite volume calculations of fluid-flow
,”
Int. J. Numer. Meth.
8
(
9
),
1037
1050
(
1988
).
54.
D.
Phillips
,
X. C.
Chen
,
R.
Baggs
,
D.
Rubens
,
M.
Violante
, and
K. J.
Parker
, “
Acoustic backscatter properties of the particle/bubble ultrasound contrast agent
,”
Ultrasonics
36
(
8
),
883
892
(
1998
).
55.
J. H.
Ferziger
and
M.
Peric
,
Computational Methods for Fluid Dynamics
(
Springer Verlag
,
Berlin
,
1995
).
56.
R. I.
Issa
, “
Solution of the implicitly discretized fluid-flow equations by operator-splitting
,”
J. Comput. Phys.
62
(
1
),
40
65
(
1986
).
57.
J.
Zhang
,
D. M.
Eckmann
, and
P. S.
Ayyaswamy
, “
A front tracking method for a deformable intravascular bubble in a tube with soluble surfactant transport
,”
J. Comput. Phys.
214
(
1
),
366
396
(
2006
).
58.
M. O.
Culjat
,
D.
Goldenberg
,
P.
Tewari
, and
R. S.
Singh
, “
A review of tissue substitutes for ultrasound imaging
,”
Ultrasound Med. Biol.
36
(
6
),
861
873
(
2010
).
59.
J. M.
Gorce
,
M.
Arditi
, and
M.
Schneider
, “
Influence of bubble size distribution on the echogenicity of ultrasound contrast agents: A study of SonoVue (TM)
,”
Invest. Radiol.
35
(
11
),
661
671
(
2000
).
60.
D. E.
Goertz
,
N.
de Jong
, and
A. F. W.
van der Steen
, “
Attenuation and size distribution measurements of definity (TM) and manipulated definity (TM) populations
,”
Ultrasound Med. Biol.
33
(
9
),
1376
1388
(
2007
).
61.
T.
Faez
,
D.
Goertz
, and
N.
De Jong
, “
Characterization of definity (Tm) ultrasound contrast agent at frequency range of 5-15 Mhz
,”
Ultrasound Med. Biol.
37
(
2
),
338
342
(
2011
).
62.
M.
Bertossi
,
D.
Virgintino
,
E.
Maiorano
,
M.
Occhiogrosso
, and
L.
Roncali
, “
Ultrastructural and morphometric investigation of human brain capillaries in normal and peritumoral tissues
,”
Ultrastruct. Pathol.
21
(
1
),
41
49
(
1997
).
63.
D. B.
Khismatullin
, “
Resonance frequency of microbubbles: Effect of viscosity
,”
J. Acoust. Soc. Am.
116
(
3
),
1463
1473
(
2004
).
64.
H. R.
Zheng
,
P. A.
Dayton
,
C.
Caskey
,
S. K.
Zhao
,
S. P.
Qin
, and
K. W.
Ferrara
, “
Ultrasound-driven microbubble oscillation and translation within small phantom vessels
,”
Ultrasound Med. Biol.
33
(
12
),
1978
1987
(
2007
).
65.
K.
Tyml
,
D.
Anderson
,
D.
Lidington
, and
H. M.
Ladak
, “
A new method for assessing arteriolar diameter and hemodynamic resistance using image analysis of vessel lumen
,”
Am. J. Physiol-Heart C
284
(
5
),
H1721
H1728
(
2003
).
66.
A.
Prosperetti
, “
Nonlinear oscillations of gas-bubbles in liquids: Transient solutions and connection between subharmonic signal and cavitation
,”
J. Acoust. Soc. Am.
57
(
4
),
810
821
(
1975
).
67.
A. A.
Doinikov
,
J. F.
Haac
, and
P. A.
Dayton
, “
Resonance frequencies of lipid-shelled microbubbles in the regime of nonlinear oscillations
,”
Ultrasonics
49
(
2
),
263
268
(
2009
).
68.
E. A.
Zabolotskaya
, “
Interaction of gas-bubbles in a sound field
,”
Sov. Phys. Acoust.
30
(
5
),
365
368
(
1984
).
69.
J. S.
Allen
,
D. E.
Kruse
,
P. A.
Dayton
, and
K. W.
Ferrara
, “
Effect of coupled oscillations on microbubble behavior
,”
J. Acoust. Soc. Am.
114
(
3
),
1678
1690
(
2003
).
You do not currently have access to this content.