A continuous model is derived for the dynamics of two immiscible fluids with moving contact lines and insoluble surfactants based on thermodynamic principles. The continuum model consists of the Navier-Stokes equations for the dynamics of the two fluids and a convection-diffusion equation for the evolution of the surfactant on the fluid interface. The interface condition, the boundary condition for the slip velocity, and the condition for the dynamic contact angle are derived from the consideration of energy dissipations. Different types of energy dissipations, including the viscous dissipation, the dissipations on the solid wall and at the contact line, as well as the dissipation due to the diffusion of surfactant, are identified from the analysis. A finite element method is developed for the continuum model. Numerical experiments are performed to demonstrate the influence of surfactant on the contact line dynamics. The different types of energy dissipations are compared numerically.

1.
J.
Xu
,
Z.
Li
,
J.
Lowengrub
, and
H.
Zhao
, “
A level-set method for interfacial flows with surfactant
,”
J. Comput. Phys.
212
,
590
616
(
2006
).
2.
A.
James
and
J.
Lowengrub
, “
A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant
,”
J. Comput. Phys.
201
,
685
722
(
2004
).
3.
M.
Lai
,
Y.
Tseng
, and
H.
Huang
, “
An immersed boundary method for interfacial flows with insoluble surfactant
,”
J. Comput. Phys.
227
,
7279
7293
(
2008
).
4.
I. B.
Bazhlekov
,
P. D.
Anderson
, and
H. E. H.
Meijer
, “
Numerical investigation of the effect of insoluble surfactants on drop deformation and breakup in simple shear flow
,”
J. Colloid Interface Sci.
298
,
369
394
(
2006
).
5.
Y.
Pawar
and
K. J.
Stebe
, “
Marangoni effects on drop deformation in an extensional flow: The role of surfactant physical chemistry. I. Insoluble surfactants
,”
Phys. Fluids
8
,
1738
1751
(
1996
).
6.
S.
Khatri
and
A. K.
Tornberg
, “
A numerical method for two phase flows with insoluble surfactants
,”
Comput. Fluids
49
,
150
165
(
2011
).
7.
K. T.
Teigen
,
P.
Song
,
J.
Lowengrub
, and
A.
Voigt
, “
A diffuse-interface method for two-phase flows with soluble surfactants
,”
J. Comput. Phys.
230
,
375
393
(
2011
).
8.
S.
Yon
and
C.
Pozrikidis
, “
Deformation of a liquid drop adhering to a plane wall: Significance of the drop viscosity and the effect of an insoluble surfactant
,”
Phys. Fluids
11
,
1297
1308
(
1999
).
9.
R.
Defay
and
I.
Priogine
,
Surface Tension and Adsorption
(
Wiley
,
New York
,
1966
).
10.
D. I.
Collias
and
R. K.
Prudhomme
, “
Diagnostic techniques of mixing effectiveness: The effect of shear and elongation in drop production in mixing tanks
,”
Chem. Eng. Sci.
47
,
1401
1410
(
1992
).
11.
H. P.
Grace
, “
Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems
,”
Chem. Eng. Commun.
14
,
225
277
(
1982
).
12.
A. M.
Schwartz
,
J. W.
Perry
, and
J.
Berch
,
Surface Active Agents and Detergents
(
Krieger
,
New York
,
1977
).
13.
P.
Somasundaran
and
R.
Ramachandran
, “
Surfactants in flotation
,” in
Surfactants in Chemical/Process Engineering
, edited by
D. T.
Wasan
,
M. E.
Ginn
, and
D. O.
Shah
(
Marcel Dekker
,
New York
,
1988
), Vol.
28
, pp.
195
235
.
14.
J. C.
Baret
, “
Surfactants in droplet-based microfluidics
,”
Lab Chip
12
,
422
433
(
2012
).
15.
A.
Branger
and
D.
Eckmann
,“
Accelerated arteriolar gas embolism reabsorption by an exogenous surfactant
,”
Anesthesiology
96
,
971
979
(
2002
).
16.
D. M.
Eckmann
and
V. N.
Lomivorotov
, “
Microvascular gas embolization clearance following perfluorocarbon administration
,”
J. Appl. Physiol.
94
,
860
868
(
2003
).
17.
T.
Young
, “
An essay on the cohesion of fluids
,”
Philos. Trans. R. Soc. London
95
,
65
87
(
1805
).
18.
C.
Huh
and
L. E.
Scriven
, “
Hydrodynamic model of steady movement of a solid/liquid/fluid contact line
,”
J. Colloid Interface Sci.
35
,
85
101
(
1971
).
19.
E. B.
Dussan
 V
and
S. H.
Davis
, “
On the motion of a fluid-fluid interface along a solid surface
,”
J. Fluid Mech.
65
,
71
95
(
1974
).
20.
E. B.
Dussan
 V
, “
On the spreading of liquids on solid surfaces: Static and dynamic contact lines
,”
Annu. Rev. Fluid Mech.
11
,
371
400
(
1979
).
21.
P. G.
de Gennes
, “
Wetting: Statics and dynamics
,”
Rev. Mod. Phys.
57
,
827
863
(
1985
).
22.
T. D.
Blake
, “
The physics of moving wetting lines
,”
J. Colloid Interface Sci.
299
,
1
13
(
2006
).
23.
D.
Bonn
,
J.
Eggers
,
J.
Indekeu
,
J.
Meunier
, and
E.
Rolley
, “
Wetting and spreading
,”
Rev. Mod. Phys.
81
,
739
805
(
2009
).
24.
P.-G.
de Gennes
,
F.
Brochard-Wyart
, and
D.
Quéré
,
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
(
Springer
,
New York
,
2003
).
25.
V. M.
Starov
,
M. G.
Velarde
, and
C. J.
Radke
,
Wetting and Spreading Dynamics
(
CRC Press
,
Boca Raton
,
2007
).
26.
Y. D.
Shikhmurzaev
,
Capillary Flows with Forming Interfaces
(
Chapman and Hall/CRC
,
Boca Raton
,
2008
).
27.
W.
Ren
,
D.
Hu
, and
W.
E
, “
Continuum models for the contact line problem
,”
Phys. Fluids
22
,
102103
(
2010
).
28.
W.
Ren
and
W.
E
, “
Derivation of continuum models for the moving contact line problem based on thermodynamic principles
,”
Commun. Math. Sci.
9
,
597
606
(
2011
).
29.
H.
Liu
and
Y.
Zhang
, “
Phase-field modeling droplet dynamics with soluble surfactants
,”
J. Comput. Phys.
229
,
9166
9187
(
2010
).
30.
J.
Zhang
,
D.
Eckmann
, and
P.
Ayyaswamy
, “
A front tracking method for a deformable intravascular bubble in a tube with soluble surfactant transport
,”
J. Comput. Phys.
214
,
366
396
(
2006
).
31.
M.-C.
Lai
,
Y.-H.
Tseng
, and
H.
Huang
, “
Numerical simulation of moving contact lines with surfactant by immersed boundary method
,”
Commun. Comput. Phys.
8
,
735
757
(
2010
).
32.
H.
Stone
, “
A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface
,”
Phys. Fluids. A
2
,
111
112
(
1990
).
33.
H.
Wong
,
D.
Rumschitzki
, and
C.
Maldarelli
, “
On the surfactant mass balance at a deforming fluid interface
,”
Phys. Fluids
8
,
3203
3204
(
1996
).
34.
M.
Muradoglu
and
G.
Tryggvason
, “
A front-tracking method for computation of interfacial flows with soluble surfactants
,”
J. Comput. Phys.
227
,
2238
2262
(
2008
).
35.
M. R.
Booty
and
M.
Siegel
, “
A hybrid numerical method for interfacial fluid flow with soluble surfactant
,”
J. Comput. Phys.
229
,
3864
3883
(
2010
).
36.
K.
Chen
and
M.
Lai
, “
A conservative scheme for solving coupled surface-bulk convection-diffusion equations with an application to interfacial flows with soluble surfactant
,”
J. Comput. Phys.
257
,
1
18
(
2014
).
37.
J.
Xu
and
W.
Ren
, “
A level-set method for two-phase flows with moving contact line and insoluble surfactant
,”
J. Comput. Phys.
263
,
71
90
(
2014
).
38.
P.
Cermelli
,
E.
Fried
, and
M.
Gurtin
, “
Transport relations for surface integrals arising in the formulation of balance laws for evolving fluid interfaces
,”
J. Fluid Mech.
544
,
339
351
(
2005
).
39.
D. A.
Edwards
,
H.
Brenner
, and
D. T.
Wasan
,
Interfacial Transport Processes and Rheology
(
Butterworth-Heinemann
,
1991
).
40.
B.
von Brunt
,
The Calculus of Variations
(
Springer-Verlag
,
2004
).
41.
M.
Giaquinta
and
S.
Hildebrandt
,
Calculus of Variations
(
Springer
,
1996
), Vol.
I and II
.
You do not currently have access to this content.