In this work, the motion of a two-dimensional drop on a surface with stepwise wettability gradient (WG) is studied numerically by a hybrid lattice-Boltzmann finite-difference method. We incorporate the geometric wetting boundary condition that allows accurate implementation of a contact angle hysteresis (CAH) model. The method is first validated through a series of tests that check different constituents of the numerical model. Then, simulations of a drop on a wall with given stepwise WG are performed under different conditions. The effects of the Reynolds number, the viscosity ratio, the WG, as well as the CAH on the drop motion are investigated in detail. It was discovered that the shape of the drop in steady motion may be fitted by two arcs that give two apparent contact angles, which are related to the respective contact line velocities and the relevant contact angles (that specify the WG and CAH) through the relation derived by Cox [“The dynamics of the spreading of liquids on a solid surface. Part 1. viscous flow,” J. Fluid Mech.168, 169194 (1986)] if the slip length in simulation is defined according to Yue et al. [“Sharp-interface limit of the Cahn-Hilliard model for moving contact lines,” J. Fluid Mech.645, 279294 (2010)]. It was also found that the steady capillary number of the drop is significantly affected by the viscosity ratio, the magnitudes of the WG, and the CAH, whereas it almost shows no dependence on the Reynolds number.

1.
A. A.
Darhuber
and
S. M.
Troian
, “
Principles of microfluidic actuation by modulation of surface stresses
,”
Annu. Rev. Fluid Mech.
37
,
425
(
2005
).
2.
Y.-H.
Lai
,
M.-H.
Hsu
, and
J.-T.
Yang
, “
Enhanced mixing of droplets during coalescence on a surface with a wettability gradient
,”
Lab Chip
10
,
3149
3156
(
2010
).
3.
H. K.
Bardaweel
,
K.
Zamuruyev
,
J.-P.
Delplanque
, and
C. E.
Davis
, “
Wettability-gradient-driven micropump for transporting discrete liquid drops
,”
J. Micromech. Microeng.
23
,
035036
(
2013
).
4.
M. J.
Hancock
,
K.
Sekeroglu
, and
M. C.
Demirel
, “
Bioinspired directional surfaces for adhesion, wetting, and transport
,”
Adv. Funct. Mater.
22
,
2223
2234
(
2012
).
5.
F.
Brochard
, “
Motions of droplets on solid surfaces induced by chemical or thermal gradients
,”
Langmuir
5
,
432
438
(
1989
).
6.
R. S.
Subramanian
,
N.
Moumen
, and
J. B.
McLaughlin
, “
Motion of a drop on a solid surface due to a wettability gradient
,”
Langmuir
21
,
11844
11849
(
2005
).
7.
L. M.
Pismen
and
U.
Thiele
, “
Asymptotic theory for a moving droplet driven by a wettability gradient
,”
Phys. Fluids
18
,
042104
(
2006
).
8.
J. D.
Halverson
,
C.
Maldarelli
,
A.
Couzis
, and
J.
Koplik
, “
A molecular dynamics study of the motion of a nanodroplet of pure liquid on a wetting gradient
,”
J. Chem. Phys.
129
,
164708
(
2008
).
9.
J.
Huang
,
C.
Shu
, and
Y.
Chew
, “
Numerical investigation of transporting droplets by spatiotemporally controlling substrate wettability
,”
J. Colloid Interface Sci.
328
,
124
133
(
2008
).
10.
Z.-Y.
Shi
,
G.-H.
Hu
, and
Z.-W.
Zhou
, “
Lattice Boltzmann simulation of droplet motion driven by gradient of wettability
,”
Acta Phys. Sin.
59
,
2595
2600
(
2010
).
11.
F. D. D.
Santos
and
T.
Ondarcuhu
, “
Free-running droplets
,”
Phys. Rev. Lett.
75
,
2972
2975
(
1995
).
12.
A. K.
Das
and
P. K.
Das
, “
Multimode dynamics of a liquid drop over an inclined surface with a wettability gradient
,”
Langmuir
26
,
9547
9555
(
2010
).
13.
X.
Xu
and
T.
Qian
, “
Droplet motion in one-component fluids on solid substrates with wettability gradients
,”
Phys. Rev. E
85
,
051601
(
2012
).
14.
E.
Esmaili
,
A.
Moosavi
, and
A.
Mazloomi
, “
The dynamics of wettability driven droplets in smooth and corrugated microchannels
,”
J. Stat. Mech.
(
2012
)
P10005
.
15.
T.
Ondarcuhu
and
M.
Veyssie
, “
Dynamics of spreading of a liquid drop across a surface chemical discontinuity
,”
J. Phys. II
1
,
75
85
(
1991
).
16.
M. K.
Chaudhury
and
G. M.
Whitesides
, “
How to make water run uphill
,”
Science
256
,
1539
1541
(
1992
).
17.
N.
Moumen
,
R. S.
Subramanian
, and
J. B.
McLaughlin
, “
Experiments on the motion of drops on a horizontal solid surface due to a wettability gradient
,”
Langmuir
22
,
2682
2690
(
2006
).
18.
G. C. H.
Mo
,
W.
Liu
, and
D. Y.
Kwok
, “
Surface-ascension of discrete liquid drops via experimental reactive wetting and lattice Boltzmann simulation
,”
Langmuir
21
,
5777
5782
(
2005
).
19.
R.
Yamada
and
H.
Tada
, “
Manipulation of droplets by dynamically controlled wetting gradients
,”
Langmuir
21
,
4254
4256
(
2005
).
20.
F.
Varnik
,
P.
Truman
,
B.
Wu
,
P.
Uhlmann
,
D.
Raabe
, and
M.
Stamm
, “
Wetting gradient induced separation of emulsions: A combined experimental and lattice Boltzmann computer simulation study
,”
Phys. Fluids
20
,
072104
(
2008
).
21.
S.
Daniel
and
M. K.
Chaudhury
, “
Rectified motion of liquid drops on gradient surfaces induced by vibration
,”
Langmuir
18
,
3404
3407
(
2002
).
22.
S.
Daniel
,
S.
Sircar
,
J.
Gliem
, and
M. K.
Chaudhury
, “
Ratcheting motion of liquid drops on gradient surfaces
,”
Langmuir
20
,
4085
4092
(
2004
).
23.
R. G.
Cox
, “
The dynamics of the spreading of liquids on a solid surface. Part 1. viscous flow
,”
J. Fluid Mech.
168
,
169
194
(
1986
).
24.
R. G.
Cox
, “
Inertial and viscous effects on dynamic contact angles
,”
J. Fluid Mech.
357
,
249
278
(
1998
).
25.
M.
Fermigier
and
P.
Jenffer
, “
An experimental investigation of the dynamic contact angle in liquid-liquid systems
,”
J. Colloid Interface Sci.
146
,
226
241
(
1991
).
26.
H.
Ding
,
E. Q.
Li
,
F. H.
Zhang
,
Y.
Sui
,
P. D. M.
Spelt
, and
S. T.
Thoroddsen
, “
Propagation of capillary waves and ejection of small droplets in rapid droplet spreading
,”
J. Fluid Mech.
697
,
92
114
(
2012
).
27.
P.
Yue
,
C.
Zhou
, and
J. J.
Feng
, “
Sharp-interface limit of the Cahn-Hilliard model for moving contact lines
,”
J. Fluid Mech.
645
,
279
294
(
2010
).
28.
Y.
Sui
and
P. D. M.
Spelt
, “
Validation and modification of asymptotic analysis of slow and rapid droplet spreading by numerical simulation
,”
J. Fluid Mech.
715
,
283
313
(
2013
).
29.
H.
Liu
,
S.
Krishnan
,
S.
Marella
, and
H.
Udaykumar
, “
Sharp interface Cartesian grid method II: A technique for simulating droplet interactions with surfaces of arbitrary shape
,”
J. Comput. Phys.
210
,
32
54
(
2005
).
30.
P. D. M.
Spelt
, “
Shear flow past two-dimensional droplets pinned or moving on an adhering channel wall at moderate Reynolds numbers: A numerical study
,”
J. Fluid Mech.
561
,
439
(
2006
).
31.
C.
Fang
,
C.
Hidrovo
,
F.
min Wang
,
J.
Eaton
, and
K.
Goodson
, “
3-D numerical simulation of contact angle hysteresis for microscale two phase flow
,”
Int. J. Multiphase Flow
34
,
690
705
(
2008
).
32.
H.
Ding
and
P. D. M.
Spelt
, “
Onset of motion of a three-dimensional droplet on a wall in shear flow at moderate Reynolds numbers
,”
J. Fluid Mech.
599
,
341
362
(
2008
).
33.
J.-B.
Dupont
and
D.
Legendre
, “
Numerical simulation of static and sliding drop with contact angle hysteresis
,”
J. Comput. Phys.
229
,
2453
2478
(
2010
).
34.
L.
Wang
,
H.
Huang
, and
X.-Y.
Lu
, “
Scheme for contact angle and its hysteresis in a multiphase lattice Boltzmann method
,”
Phys. Rev. E
87
,
013301
(
2013
).
35.
J.-J.
Huang
,
H.
Huang
,
C.
Shu
,
Y. T.
Chew
, and
S.-L.
Wang
, “
Hybrid multiple-relaxation-time lattice-Boltzmann finite-difference method for axisymmetric multiphase flows
,”
J. Phys. A: Math. Theor.
46
,
055501
(
2013
).
36.
J. J.
Huang
,
C.
Shu
, and
Y. T.
Chew
, “
Mobility-dependent bifurcations in capillarity-driven two-phase fluid systems by using a lattice Boltzmann phase-field model
,”
Int. J. Numer. Meth. Fluids
60
,
203
225
(
2009
).
37.
D.
Jacqmin
, “
Calculation of two-phase Navier-Stokes flows using phase-field modeling
,”
J. Comput. Phys.
155
,
96
127
(
1999
).
38.
D.
Jacqmin
, “
Contact-line dynamics of a diffuse fluid interface
,”
J. Fluid Mech.
402
,
57
88
(
2000
).
39.
T.
Qian
,
X.-P.
Wang
, and
P.
Sheng
, “
Molecular scale contact line hydrodynamics of immiscible flows
,”
Phys. Rev. E
68
,
016306
(
2003
).
40.
A. J.
Briant
and
J. M.
Yeomans
, “
Lattice Boltzmann simulations of contact line motion. II. Binary fluids
,”
Phys. Rev. E
69
,
031603
(
2004
).
41.
H.
Ding
and
P. D. M.
Spelt
, “
Wetting condition in diffuse interface simulations of contact line motion
,”
Phys. Rev. E
75
,
046708
(
2007
).
42.
L.
Liu
and
T.
Lee
, “
Wall free energy based polynomial boundary conditions for non-ideal gas lattice Boltzmann equation
,”
Int. J. Mod. Phys. C
20
,
1749
1768
(
2009
).
43.
A.
Carlson
,
M.
Do-Quang
, and
G.
Amberg
, “
Modeling of dynamic wetting far from equilibrium
,”
Phys. Fluids
21
,
121701
(
2009
).
44.
H. S.
Wiklund
,
S. B.
Lindstrom
, and
T.
Uesaka
, “
Boundary condition considerations in lattice Boltzmann formulations of wetting binary fluids
,”
Comput. Phys. Commun.
182
,
2192
2200
(
2011
).
45.
P.
Yue
and
J. J.
Feng
, “
Wall energy relaxation in the Cahn-Hilliard model for moving contact lines
,”
Phys. Fluids
23
,
012106
(
2011
).
46.
J.-J.
Huang
,
H.
Huang
, and
X.
Wang
, “
Wetting boundary conditions in phase-field-based simulation of binary fluids: Some comparative studies and new development
,” preprint arXiv:1310.8412 [physics.flu-dyn] (
2013
).
47.
H.
Kusumaatmaja
and
J. M.
Yeomans
, “
Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces
,”
Langmuir
23
,
6019
6032
(
2007
).
48.
T.
Lee
and
L.
Liu
, “
Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces
,”
J. Comput. Phys.
229
,
8045
8063
(
2010
).
49.
Y. Q.
Zu
and
S.
He
, “
Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts
,”
Phys. Rev. E
87
,
043301
(
2013
).
50.
V. E.
Badalassi
,
H. D.
Ceniceros
, and
S.
Banerjee
, “
Computation of multiphase systems with phase field models
,”
J. Comput. Phys.
190
,
371
397
(
2003
).
51.
P.
Yue
,
C.
Zhou
,
J. J.
Feng
,
C. F.
Ollivier-Gooch
, and
H. H.
Hu
, “
Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing
,”
J. Comput. Phys.
219
,
47
67
(
2006
).
52.
A. V.
Coward
,
Y. Y.
Renardy
,
M.
Renardy
, and
J. R.
Richards
, “
Temporal evolution of periodic disturbances in two-layer Couette flow
,”
J. Comput. Phys.
132
,
346
361
(
1997
).
53.
V. V.
Khatavkar
,
P. D.
Anderson
, and
H. E. H.
Meijer
, “
Capillary spreading of a droplet in the partially wetting regime using a diffuse-interface model
,”
J. Fluid Mech.
572
,
367
387
(
2007
).
54.
A. L.
Yarin
, “
Drop impact dynamics: Splashing, spreading, receding, bouncing…
Annu. Rev. Fluid Mech.
38
,
159
192
(
2006
).
55.
W.
Villanueva
and
G.
Amberg
, “
Some generic capillary-driven flows
,”
Int. J. Multiphase Flow
32
,
1072
1086
(
2006
).
56.
H.
Huang
and
X.-Y.
Lu
, “
Relative permeabilities and coupling effects in steady-state gas-liquid flow in porous media: A lattice Boltzmann study
,”
Phys. Fluids
21
,
092104
(
2009
).
57.
Y.
Ba
,
H.
Liu
,
J.
Sun
, and
R.
Zheng
, “
Color-gradient lattice Boltzmann model for simulating droplet motion with contact-angle hysteresis
,”
Phys. Rev. E
88
,
043306
(
2013
).
58.
A. D.
Schleizer
and
R. T.
Bonnecaze
, “
Displacement of a two-dimensional immiscible droplet adhering to a wall in shear and pressure-driven flows
,”
J. Fluid Mech.
383
,
29
54
(
1999
).
59.
Cargille immersion oil specifications, Cargille-Sacher Laboratories Inc., Cedar Grove, NJ (
2014
), see http://www.cargille.com/immeroilspecs.shtml.
60.
H.
Ding
,
P. D. M.
Spelt
, and
C.
Shu
, “
Diffuse interface model for incompressible two-phase flows with large density ratios
,”
J. Comput. Phys.
226
,
2078
2095
(
2007
).
61.
P.
Yue
,
C.
Zhou
, and
J. J.
Feng
, “
Spontaneous shrinkage of drops and mass conservation in phase-field simulations
,”
J. Comput. Phys.
223
,
1
9
(
2007
).
62.
Z.
Li
,
G.-H.
Hu
,
Z.-L.
Wang
,
Y.-B.
Ma
, and
Z.-W.
Zhou
, “
Three dimensional flow structures in a moving droplet on substrate: A dissipative particle dynamics study
,”
Phys. Fluids
25
,
072103
(
2013
).
63.
C.
Huh
and
L. E.
Scriven
, “
Hydrodynamic model of steady movement of a solid/liquid/fluid contact line
,”
J. Colloid Interface Sci.
35
,
85
101
(
1971
).
64.
X.
Jia
,
J.
McLaughlin
, and
K.
Kontomaris
, “
Lattice Boltzmann simulations of contact line motion on uniform surfaces
,”
Math. Comput. Simul.
72
,
156
159
(
2006
).
65.
F.
Mugele
,
J.-C.
Baret
, and
D.
Steinhauser
, “
Microfluidic mixing through electrowetting-induced droplet oscillations
,”
Appl. Phys. Lett.
88
,
204106
(
2006
).
66.
G.
Oldenziel
,
R.
Delfos
, and
J.
Westerweel
, “
Measurements of liquid film thickness for a droplet at a two-fluid interface
,”
Phys. Fluids
24
,
022106
(
2012
).
You do not currently have access to this content.