Dynamically stretching and retracting wingspan has been widely observed in the flight of birds and bats, and its effects on the aerodynamic performance particularly lift generation are intriguing. The rectangular flat-plate flapping wing with a sinusoidally stretching and retracting wingspan is proposed as a simple model for biologically inspired dynamic morphing wings. Numerical simulations of the low-Reynolds-number flows around the flapping morphing wing are conducted in a parametric space by using the immersed boundary method. It is found that the instantaneous and time-averaged lift coefficients of the wing can be significantly enhanced by dynamically changing wingspan in a flapping cycle. The lift enhancement is caused by both changing the lifting surface area and manipulating the flow structures responsible to the vortex lift generation. The physical mechanisms behind the lift enhancement are explored by examining the three-dimensional flow structures around the flapping wing.

1.
T.
Weis-Fogh
, “
Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production
,”
J. Exp. Biol.
59
(
1
),
169
230
(
1973
).
2.
F. O.
Lehmann
,
S. P.
Sane
, and
M.
Dickinson
, “
The aerodynamic effects of wing-wing interaction in flapping insect wings
,”
J. Exp. Biol.
208
(
16
),
3075
3092
(
2005
).
3.
C. P.
Ellington
,
C.
van den Berg
,
A. P.
Willmott
, and
A. L. R.
Thomas
, “
Leading-edge vortices in insect flight
,”
Nature (London)
384
(
6610
),
626
630
(
1996
).
4.
H.
Liu
,
C. P.
Ellington
,
K.
Kawachi
,
C.
Van den Berg
, and
A. P.
Willmott
, “
A computational fluid dynamic study of hawkmoth hovering
,”
J. Exp. Biol.
201
(
4
),
461
477
(
1998
).
5.
R. J.
Bomphrey
, “
The aerodynamics of manduca sexta: Digital particle image velocimetry analysis of the leading-edge vortex
,”
J. Exp. Biol.
208
(
6
),
1079
1094
(
2005
).
6.
T.
Maxworthy
, “
The formation and maintenance of a leading-edge vortex during the forward motion of an animal wing
,”
J. Fluid Mech.
587
,
471
475
(
2007
).
7.
D.
Lentink
and
M. H.
Dickinson
, “
Rotational accelerations stabilize leading edge vortices on revolving fly wings
,”
J. Exp. Biol.
212
(
16
),
2705
2719
(
2009
).
8.
M.
Sun
and
J.
Tang
, “
Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion
,”
J. Exp. Biol.
205
(
1
),
55
70
(
2002
).
9.
M. H.
Dickinson
, “
The effects of wing rotation on unsteady aerodynamic performance at low Reynolds-numbers
,”
J. Exp. Biol.
192
,
179
206
(
1994
).
10.
M. H.
Dickinson
,
F. O.
Lehmann
, and
S. P.
Sane
, “
Wing rotation and the aerodynamic basis of insect flight
,”
Science
284
(
5422
),
1954
1960
(
1999
).
11.
H.
Huang
and
M.
Sun
, “
Dragonfly forewing-hindwing interaction at various flight speeds and wing phasing
,”
AIAA J.
45
(
2
),
508
511
(
2007
).
12.
C. T.
Hsieh
,
C. F.
Kung
,
C. C.
Chang
, and
C. C.
Chu
, “
Unsteady aerodynamics of dragonfly using a simple wing-wing model from the perspective of a force decomposition
,”
J. Fluid Mech.
663
,
233
252
(
2010
).
13.
D.
Rival
,
D.
Schonweitz
, and
C.
Tropea
, “
Vortex interaction of tandem pitching and plunging plates: A two-dimensional model of hovering dragonfly-like flight
,”
Bioinspir. Biomimet.
6
(
1
),
016008
(
2011
).
14.
G. R.
Spedding
,
M.
Rosen
, and
A.
Hedenstrom
, “
A family of vortex wakes generated by a thrush nightingale in free flight in a wind tunnel over its entire natural range of flight speeds
,”
J. Exp. Biol.
206
(
14
),
2313
2344
(
2003
).
15.
A.
Hedenstrom
,
L. C.
Johansson
,
M.
Wolf
,
R.
von Busse
,
Y.
Winter
, and
G. R.
Spedding
, “
Bat flight generates complex aerodynamic tracks
,”
Science
316
(
5826
),
894
897
(
2007
).
16.
A.
Hedenstrom
,
L. C.
Johansson
, and
G. R.
Spedding
, “
Bird or bat: Comparing airframe design and flight performance
,”
Bioinspir. Biomimet.
4
(
1
),
015001
(
2009
).
17.
T. Y.
Hubel
,
N. I.
Hristov
,
S. M.
Swartz
, and
K. S.
Breuer
, “
Time-resolved wake structure and kinematics of bat flight
,”
Exp. Fluids
46
(
5
),
933
943
(
2009
).
18.
T. Y.
Hubel
,
D. K.
Riskin
,
S. M.
Swartz
, and
K. S.
Breuer
, “
Wake structure and wing kinematics: The flight of the lesser dog-faced fruit bat, cynopterus brachyotis
,”
J. Exp. Biol.
213
(
20
),
3427
3440
(
2010
).
19.
D. L.
Altshuler
,
R.
Dudley
,
S. M.
Heredia
, and
J. A.
McGuire
, “
Allometry of hummingbird lifting performance
,”
J. Exp. Biol.
213
(
5
),
725
734
(
2010
).
20.
M.
Yu
,
Z. J.
Wang
, and
H.
Hu
, “
Formation of bifurcated wakes behind finite span flapping wings
,”
AIAA J.
51
(
8
),
2040
2044
(
2013
).
21.
K. D.
von Ellenrieder
,
K.
Parker
, and
J.
Soria
, “
Flow structures behind a heaving and pitching finite-span wing
,”
J. Fluid Mech.
490
,
129
138
(
2003
).
22.
H.
Dong
,
R.
Mittal
, and
F. M.
Najjar
, “
Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils
,”
J. Fluid Mech.
566
,
309
343
(
2006
).
23.
H.
Hu
,
L.
Clemons
, and
H.
Igarashi
, “
An experimental study of the unsteady vortex structures in the wake of a root-fixed flapping wing
,”
Exp. Fluids
51
(
2
),
347
359
(
2011
).
24.
K. D.
von Ellenrieder
and
S.
Pothos
, “
PIV measurements of the asymmetric wake of a two dimensional heaving hydrofoil
,”
Exp. Fluids
44
(
5
),
733
745
(
2008
).
25.
Z. C.
Zheng
and
Z.
Wei
, “
Study of mechanisms and factors that influence the formation of vortical wake of a heaving airfoil
,”
Phys. Fluids
24
(
10
),
103601
(
2012
).
26.
S. P.
Sane
, “
The aerodynamics of insect flight
,”
J. Exp. Biol.
206
(
23
),
4191
4208
(
2003
).
27.
S.
Ho
,
H.
Nassef
,
N.
Pornsinsirirak
,
Y. C.
Tai
, and
C. M.
Ho
, “
Unsteady aerodynamics and flow control for flapping wing flyers
,”
Prog. Aerospace Sci.
39
(
8
),
635
681
(
2003
).
28.
F. O.
Lehmann
, “
The mechanisms of lift enhancement in insect flight
,”
Naturwissenschaften
91
(
3
),
101
122
(
2004
).
29.
Z. J.
Wang
, “
Dissecting insect flight
,”
Annu. Rev. Fluid Mech.
37
(
1
),
183
210
(
2005
).
30.
P. R.
Bandyopadhyay
, “
Swimming and flying in nature—The route toward applications: The freeman scholar lecture
,”
J. Fluids Eng.
131
(
3
),
031801
(
2009
).
31.
T.
Liu
,
J.
Montefort
, and
S.
Pantula
, “
Effects of flexible fin on low-frequency oscillation in post-stalled flows
,”
AIAA J.
48
(
6
),
1235
1247
(
2010
).
32.
W.
Shyy
,
H.
Aono
,
S. K.
Chimakurthi
,
P.
Trizila
,
C. K.
Kang
,
C. E. S.
Cesnik
, and
H.
Liu
, “
Recent progress in flapping wing aerodynamics and aeroelasticity
,”
Prog. Aerospace Sci.
46
(
7
),
284
327
(
2010
).
33.
C. K.
Kang
,
H.
Aono
,
C. E. S.
Cesnik
, and
W.
Shyy
, “
Effects of flexibility on the aerodynamic performance of flapping wings
,”
J. Fluid Mech.
689
,
32
74
(
2011
).
34.
M. J.
Shelley
and
J.
Zhang
, “
Flapping and bending bodies interacting with fluid flows
,”
Annu. Rev. Fluid Mech.
43
(
1
),
449
465
(
2011
).
35.
L.
Zhu
,
G.
He
,
S.
Wang
,
L.
Miller
,
X.
Zhang
,
Q.
You
, and
S.
Fang
, “
An immersed boundary method based on the lattice Boltzmann approach in three dimensions, with application
,”
Comput. Math. Appl.
61
(
12
),
3506
3518
(
2011
).
36.
K.
Shoele
and
Q.
Zhu
, “
Leading edge strengthening and the propulsion performance of flexible ray fins
,”
J. Fluid Mech.
693
,
402
432
(
2012
).
37.
T. S.
Liu
,
K.
Kuykendoll
,
R.
Rhew
, and
S.
Jones
, “
Avian wing geometry and kinematics
,”
AIAA J.
44
(
5
),
954
963
(
2006
).
38.
M.
Wolf
,
L. C.
Johansson
,
R.
von Busse
,
Y.
Winter
, and
A.
Hedenstrom
, “
Kinematics of flight and the relationship to the vortex wake of a Pallas’ long tongued bat (Glossophaga Soricina)
,”
J. Exp. Biol.
213
(
12
),
2142
2153
(
2010
).
39.
S.
Barbarino
,
O.
Bilgen
,
R. M.
Ajaj
,
M. I.
Friswell
, and
D. J.
Inman
, “
A review of morphing aircraft
,”
J. Intell. Mater. Syst. Struct.
22
,
823
877
(
2011
).
40.
C. S.
Peskin
, “
The immersed boundary method
,”
Acta Numer.
11
,
479
517
(
2002
).
41.
R.
Mittal
and
G.
Iaccarino
, “
Immersed boundary methods
,”
Annu. Rev. Fluid Mech.
37
,
239
261
(
2005
).
42.
S. Z.
Wang
and
X.
Zhang
, “
An immersed boundary method based on discrete stream function formulation for two- and three-dimensional incompressible flows
,”
J. Comput. Phys.
230
(
9
),
3479
3499
(
2011
).
43.
W.
Chang
,
F.
Giraldo
, and
B.
Perot
, “
Analysis of an exact fractional step method
,”
J. Comput. Phys.
180
(
1
),
183
199
(
2002
).
44.
P. G.
Saffman
and
J. S.
Sheffield
, “
Flow over a wing with an attached free vortex
,”
Stud. Appl. Math.
57
(
2
),
107
117
(
1977
).
45.
M. K.
Huang
and
C. Y.
Chow
, “
Trapping of a free vortex by Joukowski airfoils
,”
AIAA J.
20
(
3
),
292
298
(
1982
).
46.
C. Y.
Chow
,
M. K.
Huang
, and
C. Z.
Yan
, “
Unsteady-flow about a Joukowski airfoil in the presence of moving vortices
,”
AIAA J.
23
(
5
),
657
658
(
1985
).
47.
S. Z.
Wang
,
X.
Zhang
,
G. W.
He
, and
T. S.
Liu
, “
A lift formula applied to low-Reynolds-number unsteady flows
,”
Phys. Fluids
25
,
093605
(
2013
).
You do not currently have access to this content.