The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets. It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.

1.
K. R.
Helfrich
, “
Decay and return of internal solitary waves with rotation
,”
Phys. Fluids
19
,
026601
(
2007
).
2.
R. H. J.
Grimshaw
and
K. R.
Helfrich
, “
Long-time solutions of the Ostrovsky equation
,”
Stud. Appl. Math.
121
,
71
88
(
2008
).
3.
M.
Stastna
,
F. J.
Poulin
,
K. L.
Rowe
, and
C.
Subich
, “
On fully nonlinear, vertically trapped wave packets in a stratified fluid on the f-plane
,”
Phys. Fluids
21
,
106604
(
2009
).
4.
K. R.
Khusnutdinova
and
K. R.
Moore
, “
Initial-value problem for coupled Boussinesq equations and a hierarchy of Ostrovsky equations
,”
Wave Motion
48
,
738
752
(
2011
).
5.
R. H. J.
Grimshaw
,
K. R.
Helfrich
, and
E. R.
Johnson
, “
Experimental study of the effect of rotation on nonlinear internal waves
,”
Phys. Fluids
25
,
056602
(
2013
).
6.
D.
Farmer
,
Q.
Li
, and
J.-H.
Park
, “
Internal wave observations in the South China Sea: The role of rotation and non-linearity
,”
Atmos.-Ocean
47
,
267
280
(
2009
).
7.
Q.
Li
and
D. M.
Farmer
, “
The generation and evolution of nonlinear internal waves in the deep basin of the South China Sea
,”
J. Phys. Oceanogr.
41
,
1345
1363
(
2011
).
8.
V.
Vlasenko
,
J. C.
Sanchez Garrido
,
N.
Stashchuk
,
J.
Garcia Lafuente
, and
M.
Losada
, “
Three-dimensional evolution of large-amplitude internal waves in the Strait of Gibraltar
,”
J. Phys. Oceanogr.
39
,
2230
2246
(
2009
).
9.
V. I.
Shrira
and
V.
Geogjaev
, “
What makes the Peregrine soliton so special as a prototype of freak waves
?”
. Eng. Math.
67
,
11
22
(
2010
).
10.
L. D.
Carr
and
J.
Brand
, “
Spontaneous soliton formation and modulational instability in Bose-Einstein condensates
,”
Phys. Rev. Lett.
92
,
040401
(
2004
).
11.
R. H. J.
Grimshaw
,
D.
Pelinovsky
,
E.
Pelinovsky
, and
T.
Talipova
, “
Wave group dynamics in weakly nonlinear long-wave models
,”
Phys. D
159
,
35
57
(
2001
).
12.
P.
Wai
,
H.
Chen
, and
Y.
Lee
, “
Radiations by “solitons” at the zero group-dispersion wavelength of single-mode optical fibers
,”
Phys. Rev. A
41
,
426
(
1990
).
13.
R.
Grimshaw
, “
Weakly nonlocal solitary waves in a singularly perturbed nonlinear Schrodinger equation
,”
Stud. Appl. Math.
94
,
257
270
(
1995
).
14.
R. H. J.
Grimshaw
,
J.-M.
He
, and
L. A.
Ostrovsky
, “
Terminal damping of a solitary wave due to radiation in rotational systems
,”
Stud. Appl. Math.
101
,
197
210
(
1998
).
15.
M. J.
Ablowitz
and
H.
Segur
,
Solitons and the Inverse Scattering Transform
,
Studies in Applied Mathematics Series
(
Society for Industrial and Applied Mathematics
,
2006
).
16.
R. H. J.
Grimshaw
and
K. R.
Helfrich
, “
The effect of rotation on internal solitary waves
,”
IMA J. Appl. Math.
77
,
326
339
(
2012
).
17.
M.
Stastna
and
K.
Rowe
, “
On weakly nonlinear descriptions of nonlinear internal gravity waves in a rotating reference frame
,”
Atl. Electron. Math.
2
,
30
(
2007
).
18.
O. A.
Gilman
,
R. H. J.
Grimshaw
, and
Y. A.
Stepanyants
, “
Dynamics of internal solitary waves in a rotating fluid
,”
Dyn. Atmos. Oceans
23
,
403
411
(
1996
).
19.
M. J.
Lighthill
, “
Contributions to the theory of waves in non-linear dispersive systems
,”
IMA J. Appl. Math.
1
,
269
306
(
1965
).
20.
H.
Hasimoto
and
H.
Ono
, “
Nonlinear modulation of gravity waves
,”
J. Phys. Soc. Jpn.
33
,
805
811
(
1972
).
21.
T. B.
Benjamin
and
J. E.
Feir
, “
The disintegration of wave trains on deep water
,”
J. Fluid Mech.
27
,
417
430
(
1967
).
22.
A. M.
Kamchatnov
,
Nonlinear Periodic Waves and Their Modulations: An Introductory Course
(
World Scientific Publishing Company
,
Incorporated
,
2000
), p.
305
.
23.
L. N.
Trefethen
,
Spectral Methods in MATLAB
, Vol.
10
(
Society for Industrial and Applied Mathematics
,
2000
), p.
111
.
24.
J. R.
Cash
and
A. H.
Karp
, “
A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides
,”
ACM Trans. Math. Software (TOMS)
16
,
201
222
(
1990
).
25.
S. A.
Orszag
and
C. M.
Bender
,
Advanced Mathematical Methods for Scientists and Engineers
(
McGraw Hill
,
New York
,
1978
), p.
276
.
You do not currently have access to this content.