Rotating Rayleigh–Bénard convection in water is studied in direct numerical simulations, where the temperature dependence of the viscosity, the thermal conductivity, and the density within the buoyancy term is taken into account. In all simulations, the arithmetic mean of the lowest and highest temperature in the system equals 40 °C, corresponding to a Prandtl number of Pr = 4.38. In the non-rotational case, the Rayleigh number Ra ranges from 107 to 1.16 × 109 and temperature differences Δ up to 70 K are considered, whereas in the rotational case the inverse Rossby number range from 0.07 ⩽ 1/Ro ⩽ 14.1 is studied for Δ = 40 K with the focus on Ra = 108. The non-Oberbeck–Boussinesq (NOB) effects in water are reflected in an up to 5.5 K enhancement of the center temperature and in an up to 5% reduction of the Nusselt number. The top thermal and viscous boundary layer thicknesses increase and the bottom ones decrease, while the sum of the corresponding top and bottom thicknesses remains as in the classical Oberbeck–Boussinesq (OB) case. Rotation applied to NOB thermal convection reduces the central temperature enhancement. Under NOB conditions the top (bottom) thermal and viscous boundary layers become equal for a slightly larger (smaller) inverse Rossby number than in the OB case. Furthermore, for rapid rotation the thermal bottom boundary layers become thicker than the top ones. The Nusselt number normalized by that in the non-rotating case depends similarly on 1/Ro  in both, the NOB and the OB cases. The deviation between the Nusselt number under OB and NOB conditions is minimal when the thermal and viscous boundary layers are equal.

1.
H.
Bénard
, “
Les tourbillons cellulaires dans une nappe liquide
,”
Rev. Gen. Sci. Pures Appl.
11
,
1261
1271
(
1900
).
2.
Lord
Rayleigh
, “
On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side
,”
Phil. Mag.
32
,
529
546
(
1916
).
3.
E.
Bodenschatz
,
W.
Pesch
, and
G.
Ahlers
, “
Recent developments in Rayleigh-Bénard convection
,”
Annu. Rev. Fluid Mech.
32
,
709
778
(
2000
).
4.
G.
Ahlers
,
S.
Grossmann
, and
D.
Lohse
, “
Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection
,”
Rev. Mod. Phys.
81
,
503
(
2009
).
5.
D.
Lohse
and
K.-Q.
Xia
, “
Small-scale properties of turbulent Rayleigh-Bénard convection
,”
Ann. Rev. Fluid Mech.
42
,
335
364
(
2010
).
6.
F.
Chillà
and
J.
Schumacher
, “
New perspectives in turbulent Rayleigh-Bénard convection
,”
Eur. Phys. J. E
35
,
1
25
(
2012
).
7.
R. J. A. M.
Stevens
,
H. J. H.
Clercx
, and
D.
Lohse
, “
Heat transport and flow structure in rotating Rayleigh–Bénard convection
,”
Eur. J. Mech. (B/Fluids)
40
,
41
49
(
2013
).
8.
S.
Horn
,
O.
Shishkina
, and
C.
Wagner
, “
On non-Oberbeck–Boussinesq effects in three-dimensional Rayleigh–Bénard convection in glycerol
,”
J. Fluid Mech.
724
,
175
202
(
2013
).
9.
S.
Horn
,
O.
Shishkina
, and
C.
Wagner
, “
Non-Oberbeck–Boussinesq effects in Rayleigh–Bénard convection of liquids
,”
Third International Conference on Turbulence and Interactions
(
Springer
,
2013
).
10.
G.
Ahlers
,
E.
Brown
,
F.
Fontenele Araujo
,
D.
Funfschilling
,
S.
Grossmann
, and
D.
Lohse
, “
Non-Oberbeck–Boussinesq effects in strongly turbulent Rayleigh–Bénard convection
,”
J. Fluid Mech.
569
,
409
445
(
2006
).
11.
E.
Brown
and
G.
Ahlers
, “
Temperature gradients, and search for non-Boussinesq effects, in the interior of turbulent Rayleigh–Bénard convection
,”
Europhys. Lett.
80
,
14001
(
2007
).
12.
K.
Sugiyama
,
E.
Calzavarini
,
S.
Grossmann
, and
D.
Lohse
, “
Non-Oberbeck–Boussinesq effects in two-dimensional Rayleigh-Bénard convection in glycerol
,”
Europhys. Lett.
80
,
34002
(
2007
).
13.
K.
Sugiyama
,
E.
Calzavarini
,
S.
Grossmann
, and
D.
Lohse
, “
Flow organization in two-dimensional non-Oberbeck–Boussinesq Rayleigh-Bénard convection in water
,”
J. Fluid Mech.
637
,
105
135
(
2009
).
14.
Y.-N.
Young
,
H.
Riecke
, and
W.
Pesch
, “
Whirling hexagons and defect chaos in hexagonal non-Boussinesq convection
,”
New J. Phys.
5
,
135
(
2003
).
15.
A.
Oberbeck
, “
Ueber die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen
,”
Ann. Phys.
243
,
271
292
(
1879
).
16.
J.
Boussinesq
,
Théorie Analytique de la Chaleur
(
Gauthier-Villars
,
Paris
,
1903
).
17.
D. D.
Gray
and
A.
Giorgini
, “
The validity of the Boussinesq approximation for liquids and gases
,”
Int. J. Heat Mass Transfer
19
,
545
551
(
1976
).
18.
H. P.
Greenspan
,
The Theory of Rotating Fluids
(
Cambridge University Press
,
London
,
1968
).
19.
E. M.
King
,
S.
Stellmach
, and
J. M.
Aurnou
, “
Heat transfer by rapidly rotating Rayleigh–Bénard convection
,”
J. Fluid Mech.
691
,
568
582
(
2012
).
20.
K.
Julien
,
E.
Knobloch
,
A. M.
Rubio
, and
G. M.
Vasil
, “
Heat transport in low-Rossby-number Rayleigh-Bénard convection
,”
Phys. Rev. Lett.
109
,
254503
(
2012
).
21.
R. P. J.
Kunnen
,
R. J. A. M.
Stevens
,
J.
Overkamp
,
C.
Sun
,
G. F.
van Heijst
, and
H. J. H.
Clercx
, “
The role of Stewartson and Ekman layers in turbulent rotating Rayleigh–Bénard convection
,”
J. Fluid Mech.
688
,
422
442
(
2011
).
22.
J.-Q.
Zhong
,
R. J. A. M.
Stevens
,
H. J. H.
Clercx
,
R.
Verzicco
,
D.
Lohse
, and
G.
Ahlers
, “
Prandtl-, Rayleigh-, and Rossby-Number dependence of heat transport in turbulent rotating Rayleigh–Bénard Convection
,”
Phys. Rev. Lett.
102
,
044502
(
2009
).
23.
H. T.
Rossby
, “
A study of Bénard convection with and without rotation
,”
J. Fluid Mech.
36
,
309
335
(
1969
).
24.
G.
Homsy
and
J.
Hudson
, “
Centrifugally driven thermal convection in a rotating cylinder
,”
J. Fluid Mech.
35
,
33
52
(
1969
).
25.
J.
Hart
and
D.
Ohlsen
, “
On the thermal offset in turbulent rotating convection
,”
Phys. Fluids
11
,
2101
(
1999
).
26.
F.
Marques
,
I.
Mercader
,
O.
Batiste
, and
J.
Lopez
, “
Centrifugal effects in rotating convection: Axisymmetric states and three-dimensional instabilities
,”
J. Fluid Mech.
580
,
303
(
2007
).
27.
J.
Lopez
and
F.
Marques
, “
Centrifugal effects in rotating convection: Nonlinear dynamics
,”
J. Fluid Mech.
628
,
269
297
(
2009
).
28.
O.
Shishkina
and
C.
Wagner
, “
A fourth order accurate finite volume scheme for numerical simulations of turbulent Rayleigh–Bénard convection in cylindrical containers
,”
C. R. Mecanique
333
,
17
28
(
2005
).
29.
S.
Horn
and
O.
Shishkina
, “
Toroidal and poloidal energy in rotating Rayleigh–Bénard convection
,” preprint arXiv:1404.7755 (
2014
).
30.
O.
Shishkina
,
R. J. A. M.
Stevens
,
S.
Grossmann
, and
D.
Lohse
, “
Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution
,”
New J. Phys.
12
,
075022
(
2010
).
31.
X. Z.
Wu
and
A.
Libchaber
, “
Non-Boussinesq effects in free thermal convection
,”
Phys. Rev. A
43
,
2833
2839
(
1991
).
32.
J.
Zhang
,
S.
Childress
, and
A.
Libchaber
, “
Non-Boussinesq effect: Thermal convection with broken symmetry
,”
Phys. Fluids
9
,
1034
1042
(
1997
).
33.
M.
Manga
and
D.
Weeraratne
, “
Experimental study of non-Boussinesq Rayleigh–Bénard convection at high Rayleigh and Prandtl numbers
,”
Phys. Fluids
11
,
2969
2976
(
1999
).
34.
S.
Wagner
,
O.
Shishkina
, and
C.
Wagner
, “
Boundary layers and wind in cylindrical Rayleigh–Bénard cells
,”
J. Fluid Mech.
697
,
336
366
(
2012
).
35.
D.
Funfschilling
,
E.
Brown
,
A.
Nikolaenko
, and
G.
Ahlers
, “
Heat transport by turbulent Rayleigh-Bénard convection in cylindrical samples with aspect ratio one and larger
,”
J. Fluid Mech.
536
,
145
154
(
2005
).
36.
S.
Grossmann
and
D.
Lohse
, “
Scaling in thermal convection: A unifying theory
,”
J. Fluid Mech.
407
,
27
56
(
2000
).
37.
S.
Grossmann
and
D.
Lohse
, “
Thermal convection for large Prandtl numbers
,”
Phys. Rev. Lett.
86
,
3316
3319
(
2001
).
38.
S.
Grossmann
and
D.
Lohse
, “
Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection
,”
Phys. Rev. E
66
,
016305
(
2002
).
39.
R. J.
Stevens
,
E.
van der Poel
,
S.
Grossmann
, and
D.
Lohse
, “
The unifying theory of scaling in thermal convection: The updated prefactors
,”
J. Fluid Mech.
730
,
295
308
(
2013
).
40.
O.
Shishkina
and
C.
Wagner
, “
Local heat fluxes in turbulent Rayleigh–Bénard
,”
Phys. Fluids
19
,
085107
(
2007
).
41.
R. P. J.
Kunnen
,
H. J. H.
Clercx
, and
B. J.
Geurts
, “
Breakdown of large-scale circulation in turbulent rotating convection
,”
Europhys. Lett.
84
,
24001
(
2008
).
42.
R. J. A. M.
Stevens
,
J.-Q.
Zhong
,
H. J. H.
Clercx
,
G.
Ahlers
, and
D.
Lohse
, “
Transitions between turbulent states in rotating Rayleigh–Bénard convection
,”
Phys. Rev. Lett.
103
,
024503
(
2009
).
43.
S.
Weiss
,
R. J. A. M.
Stevens
,
J.-Q.
Zhong
,
H. J. H.
Clercx
,
D.
Lohse
, and
G.
Ahlers
, “
Finite-size effects lead to supercritical bifurcations in turbulent rotating Rayleigh–Bénard convection
,”
Phys. Rev. Lett.
105
,
224501
(
2010
).
44.
J.-Q.
Zhong
and
G.
Ahlers
, “
Heat transport and the large-scale circulation in rotating turbulent Rayleigh–Bénard convection
,”
J. Fluid Mech.
665
,
300
333
(
2010
).
45.
I.
Grooms
,
K.
Julien
,
J. B.
Weiss
, and
E.
Knobloch
, “
Model of convective Taylor columns in rotating Rayleigh-Bénard convection
,”
Phys. Rev. Lett.
104
,
224501
(
2010
).
46.
E. M.
King
and
J. M.
Aurnou
, “
Thermal evidence for Taylor columns in turbulent rotating Rayleigh-Bénard convection
,”
Phys. Rev. E
85
,
016313
(
2012
).
47.
S.
Horn
,
O.
Shishkina
, and
C.
Wagner
, “
The influence of non-Oberbeck–Boussinesq effects on rotating turbulent Rayleigh–Bénard convection
,”
J. Phys.: Conf. Ser.
318
,
082005
(
2011
).
48.
R.
Kunnen
,
H.
Clercx
, and
G.
van Heijst
, “
The structure of sidewall boundary layers in confined rotating Rayleigh–Bénard convection
,”
J. Fluid Mech.
727
,
509
532
(
2013
).
49.
K.
Julien
,
S.
Legg
,
J.
McWilliams
, and
J.
Werne
, “
Rapidly rotating turbulent Rayleigh–Bénard convection
,”
J. Fluid Mech.
322
,
243
273
(
1996
).
50.
Y.
Liu
and
R.
Ecke
, “
Heat transport scaling in turbulent Rayleigh–Bénard convection: Effects of Rotation and Prandtl number
,”
Phys. Rev. Lett.
79
,
2257
2260
(
1997
).
51.
R. J. A. M.
Stevens
,
H. J. H.
Clercx
, and
D.
Lohse
, “
Boundary layers in rotating weakly turbulent Rayleigh–Bénard convection
,”
Phys. Fluids
22
,
085103
(
2010
).
52.
E. M.
King
,
S.
Stellmach
,
J.
Noir
,
U.
Hansen
, and
J. M.
Aurnou
, “
Boundary layer control of rotating convection systems
,”
Nature (London)
457
,
301
304
(
2009
).
53.
R. P. J.
Kunnen
,
B. J.
Geurts
, and
H. J. H.
Clercx
, “
Experimental and numerical investigation of turbulent convection in a rotating cylinder
,”
J. Fluid Mech.
642
,
445
476
(
2010
).
54.
R. E.
Ecke
and
J. J.
Niemela
, “
Heat transport in the geostrophic regime of rotating Rayleigh-Bénard convection
,” preprint arXiv:1309.6672 (
2013
).
55.
F.
Zhong
,
R.
Ecke
, and
V.
Steinberg
, “
Rotating Rayleigh–Bénard convection: Asymmetric modes and vortex states
,”
J. Fluid Mech.
249
,
135
159
(
1993
).
56.
Y.
Liu
and
R. E.
Ecke
, “
Heat transport measurements in turbulent rotating Rayleigh-Bénard convection
,”
Phys. Rev. E
80
,
036314
(
2009
).
57.
S.
Schmitz
and
A.
Tilgner
, “
Heat transport in rotating convection without Ekman layers
,”
Phys. Rev. E
80
,
015305
(R) (
2009
).
58.
S.
Weiss
and
G.
Ahlers
, “
Heat transport by turbulent rotating Rayleigh–Bénard convection and its dependence on the aspect ratio
,”
J. Fluid Mech.
684
,
407
426
(
2011
).
59.
R. P. J.
Kunnen
,
H. J. H.
Clercx
, and
B. J.
Geurts
, “
Heat flux intensification by vortical flow localization in rotating convection
,”
Phys. Rev. E
74
,
056306
(
2006
).
60.
R. J.
Stevens
,
H. J.
Clercx
, and
D.
Lohse
, “
Optimal Prandtl number for heat transfer in rotating Rayleigh–Bénard convection
,”
New J. Phys.
12
,
075005
(
2010
).
61.
G. I.
Taylor
, “
Experiments with rotating fluids
,”
Proc. Roy. Soc. (London)
100
,
114
121
(
1921
).
62.
J.
Proudman
, “
On the motion of solids in a liquid possessing vorticity
,”
Proc. Roy. Soc. (London) A
92
,
408
424
(
1916
).
63.
S.
Chandrasekhar
,
Hydrodynamic and Hydromagnetic Stability
(
Clarendon Press
,
Oxford
,
1961
).
64.
S.
Schmitz
and
A.
Tilgner
, “
Transitions in turbulent rotating Rayleigh-Bénard convection
,”
Geophys. Astrophys. Fluid Dyn.
104
,
481
489
(
2010
).
65.
K.
Petschel
,
S.
Stellmach
,
M.
Wilczek
,
J.
Lülff
, and
U.
Hansen
, “
Dissipation layers in Rayleigh-Bénard convection: A unifying view
,”
Phys. Rev. Lett.
110
,
114502
(
2013
).
66.
A.
Sameen
,
R.
Verzicco
, and
K.
Sreenivasan
, “
Non-Boussinesq convection at moderate Rayleigh numbers in low temperature gaseous helium
,”
Phys. Scr.
2008
,
014053
(
2008
).
You do not currently have access to this content.