Multifractal subgrid-scale modeling embedded into a variational multiscale method is proposed for large-eddy simulation of passive-scalar mixing in turbulent incompressible flow. In this subgrid-scale modeling approach, subgrid-scale velocity and scalar field are directly approximated by a multifractal reconstruction process replicating the actual physics of turbulent flows. Problems from low to high Schmidt numbers (i.e., Sc ≈ 1 to Sc ≫ 1) are considered in this work. Starting from preceding work, in this study, multifractal subgrid-scale modeling is further detailed by refining the approximation process within the scalar field. Thereby, appropriate multifractal subgrid-scale modeling for passive-scalar mixing is derived in comprehensive form for the entire range of Schmidt numbers. The near-wall behavior of the multifractal subgrid-scale modeling approach is investigated for wall-bounded turbulent flows with passive-scalar mixing. The method is validated for passive-scalar mixing in turbulent channel flow for a broad range of Schmidt numbers in between 1 and 1000. Excellent performance is stated for all Schmidt numbers, in particular when comparing the results obtained with the proposed method to results provided by other methods widely used in the literature. An analysis of the subgrid-scale scalar-variance transfer highlights the influence of the multifractal subgrid-scale modeling within the variational multiscale method. The near-wall behavior of the proposed method is investigated via the transfer coefficient, for which results consistent with the theoretical correlation are obtained.

1.
C.
Scalo
,
U.
Piomelli
, and
L.
Boegman
, “
High-Schmidt-number mass transport mechanisms from a turbulent flow to absorbing sediments
,”
Phys. Fluids
24
,
085103
(
2012
).
2.
G.
Bauer
,
P.
Gamnitzer
,
V.
Gravemeier
, and
W. A.
Wall
, “
An isogeometric variational multiscale method for large-eddy simulation of coupled multi-ion transport in turbulent flow
,”
J. Comput. Phys.
251
,
194
208
(
2013
).
3.
R. S.
Rogallo
and
P.
Moin
, “
Numerical simulation of turbulent flows
,”
Annu. Rev. Fluid Mech.
16
,
99
137
(
1984
).
4.
U.
Piomelli
, “
Large-eddy simulation: Achievements and challenges
,”
Prog. Aerosp. Sci.
35
,
335
362
(
1999
).
5.
P.
Sagaut
,
Large Eddy Simulation for Incompressible Flows
(
Springer-Verlag
,
Berlin
,
2006
).
6.
V.
Gravemeier
, “
The variational multiscale method for laminar and turbulent flow
,”
Arch. Comput. Methods Eng.
13
,
249
324
(
2006
).
7.
T. J. R.
Hughes
,
L.
Mazzei
, and
K. E.
Jansen
, “
Large eddy simulation and the variational multiscale method
,”
Comput. Visual. Sci.
3
,
47
59
(
2000
).
8.
S. S.
Collis
, “
Monitoring unresolved scales in multiscale turbulence modeling
,”
Phys. Fluids
13
,
1800
1806
(
2001
).
9.
V.
Gravemeier
,
W. A.
Wall
, and
E.
Ramm
, “
Large eddy simulation of turbulent incompressible flows by a three-level finite element method
,”
Int. J. Numer. Methods Fluids
48
,
1067
1099
(
2005
).
10.
Y.
Bazilevs
,
V. M.
Calo
,
J. A.
Cottrell
,
T. J. R.
Hughes
,
A.
Reali
, and
G.
Scovazzi
, “
Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows
,”
Comput. Methods Appl. Mech. Eng.
197
,
173
201
(
2007
).
11.
Z.
Wang
and
A. A.
Oberai
, “
A mixed large eddy simulation model based on the residual-based variational multiscale formulation
,”
Phys. Fluids
22
,
075107
(
2010
).
12.
R.
Codina
,
J.
Principe
, and
M.
Avila
, “
Finite element approximation of turbulent thermally coupled incompressible flows with numerical sub-grid scale modeling
,”
Int. J. Numer. Methods Heat Fluid Flow
20
,
492
515
(
2010
).
13.
V.
Gravemeier
and
W. A.
Wall
, “
Residual-based variational multiscale methods for laminar, transitional and turbulent variable-density flow at low Mach number
,”
Int. J. Numer. Methods Fluids
65
,
1260
1278
(
2011
).
14.
V.
Gravemeier
and
W. A.
Wall
, “
An algebraic variational multiscale-multigrid method for large-eddy simulation of turbulent variable-density flow at low Mach number
,”
J. Comput. Phys.
229
,
6047
6070
(
2010
).
15.
U.
Rasthofer
and
V.
Gravemeier
, “
Multifractal subgrid-scale modeling within a variational multiscale method for large-eddy simulation of turbulent flow
,”
J. Comput. Phys.
234
,
79
107
(
2013
).
16.
R. R.
Prasad
,
C.
Meneveau
, and
K. R.
Sreenivasan
, “
Multifractal nature of the dissipation field of passive scalars in fully turbulent flows
,”
Phys. Rev. Lett.
61
,
74
77
(
1988
).
17.
C.
Meneveau
and
K. R.
Sreenivasan
, “
The multifractal nature of turbulent energy dissipation
,”
J. Fluid Mech.
224
,
429
484
(
1991
).
18.
R. D.
Frederiksen
,
W. J. A.
Dahm
, and
D. R.
Dowling
, “
Experimental assessment of fractal scale similarity in turbulent flows. Part 3. Multifractal scaling
,”
J. Fluid Mech.
338
,
127
155
(
1997
).
19.
K. R.
Sreenivasan
, “
Fractals and multifractals in fluid turbulence
,”
Annu. Rev. Fluid Mech.
23
,
539
600
(
1991
).
20.
G. C.
Burton
and
W. J. A.
Dahm
, “
Multifractal subgrid-scale modeling for large-eddy simulation. I. Model development and a priori testing
,”
Phys. Fluids
17
,
075111
(
2005
).
21.
G. C.
Burton
and
W. J. A.
Dahm
, “
Multifractal subgrid-scale modeling for large-eddy simulation. II. Backscatter limiting and a posteriori evaluation
,”
Phys. Fluids
17
,
075112
(
2005
).
22.
G. C.
Burton
, “
The nonlinear large-eddy simulation method applied to Sc ≈ 1 and Sc ≫ 1 passive-scalar mixing
,”
Phys. Fluids
20
,
035103
(
2008
).
23.
G. C.
Burton
, “
Scalar-energy spectra in simulations of Sc ≫ 1 mixing by turbulent jets using the nonlinear large-eddy simulation method
,”
Phys. Fluids
20
,
071701
(
2008
).
24.
V.
Gravemeier
,
M. W.
Gee
, and
W. A.
Wall
, “
An algebraic variational multiscale-multigrid method based on plain aggregation for convection-diffusion problems
,”
Comput. Methods Appl. Mech. Eng.
198
,
3821
3835
(
2009
).
25.
T. J. R.
Hughes
,
G.
Scovazzi
, and
L. P.
Franca
, “
Multiscale and stabilized methods
,” in
Encyclopedia of Computational Mechanics
, edited by
E.
Stein
,
R.
de Borst
, and
T. J. R.
Hughes
(
John Wiley & Sons
,
Chichester
,
2004
).
26.
K.
Falconer
,
Fractal Geometry: Mathematical Foundations and Applications
(
Wiley
,
New York
,
1990
).
27.
K. A.
Buch
and
W. J. A.
Dahm
, “
Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. Part 2. Sc ≈ 1
,”
J. Fluid Mech.
364
,
1
29
(
1998
).
28.
J. A.
Mullin
and
W. J. A.
Dahm
, “
Dual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in turbulent shear flow. II. Experimental results
,”
Phys. Fluids
18
,
035102
(
2006
).
29.
Z.
Warhaft
, “
Passive scalars in turbulent flows
,”
Annu. Rev. Fluid Mech.
32
,
203
240
(
2000
).
30.
K. R.
Sreenivasan
and
R. A.
Antonia
, “
The phenomenology of small-scale turbulence
,”
Annu. Rev. Fluid Mech.
29
,
435
472
(
1997
).
31.
F.
Brezzi
and
M.
Fortin
,
Mixed and Hybrid Finite Element Methods
(
Springer-Verlag
,
New York
,
1991
).
32.
C. A.
Taylor
,
T. J. R.
Hughes
, and
C. K.
Zarins
, “
Finite element modeling of blood flow in arteries
,”
Comput. Methods Appl. Mech. Eng.
158
,
155
196
(
1998
).
33.
C. H.
Whiting
and
K. E.
Jansen
, “
A stabilized finite element method for the incompressible Navier-Stokes equations using a hierarchical basis
,”
Int. J. Numer. Methods Fluids
35
,
93
116
(
2001
).
34.
R.
Löhner
, “
Improved error and work estimates for high-order elements
,”
Int. J. Numer. Methods Fluids
72
,
1207
1218
(
2013
).
35.
K. E.
Jansen
,
C. H.
Whiting
, and
G. M.
Hulbert
, “
A generalized-α method for integrating the filtered Navier-Stokes equations with a stabilized finite element method
,”
Comput. Methods Appl. Mech. Eng.
190
,
305
319
(
2000
).
36.
V.
Gravemeier
,
M.
Kronbichler
,
M. W.
Gee
, and
W. A.
Wall
, “
An algebraic variational multiscale-multigrid method for large-eddy simulation: Generalized-α time integration, Fourier analysis and application to turbulent flow past a square-section cylinder
,”
Comput. Mech.
47
,
217
233
(
2011
).
37.
V.
Gravemeier
,
M. W.
Gee
,
M.
Kronbichler
, and
W. A.
Wall
, “
An algebraic variational multiscale-multigrid method for large-eddy simulation of turbulent flow
,”
Comput. Methods Appl. Mech. Eng.
199
,
853
864
(
2010
).
38.
M.
Germano
,
U.
Piomelli
,
P.
Moin
, and
W. H.
Cabot
, “
A dynamic subgrid-scale eddy viscosity model
,”
Phys. Fluids A
3
,
1760
1765
(
1991
).
39.
P.
Moin
,
K.
Squires
,
W.
Cabot
, and
S.
Lee
, “
A dynamic subgrid-scale model for compressible turbulence and scalar transport
,”
Phys. Fluids A
3
,
2746
2757
(
1991
).
40.
K. E.
Jansen
, “
A stabilized finite element method for computing turbulence
,”
Comput. Methods Appl. Mech. Eng.
174
,
299
317
(
1999
).
41.
F.
Schwertfirm
and
M.
Manhart
, “
DNS of passive scalar transport in turbulent channel flow at high Schmidt numbers
,”
Int. J. Heat Fluid Flow
28
,
1204
1214
(
2007
).
42.
S.
Hickel
,
N. A.
Adams
, and
N. N.
Mansour
, “
Implicit subgrid-scale modeling for large-eddy simulation of passive-scalar mixing
,”
Phys. Fluids
19
,
095102
(
2007
).
43.
D.
You
and
P.
Moin
, “
A dynamic global-coefficient subgrid-scale model for large-eddy simulation of turbulent scalar transport in complex geometries
,”
Phys. Fluids
21
,
045109
(
2009
).
44.
R. D.
Moser
,
J.
Kim
, and
N. N.
Mansour
, “
Direct numerical simulation of turbulent channel flow up to Reτ = 590
,”
Phys. Fluids
11
,
943
945
(
1999
).
45.
H.
Tennekes
and
J. L.
Lumley
,
A First Course in Turbulence
(
MIT Press
,
Cambridge, MA
,
1972
).
46.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
Cambridge
,
2000
).
47.
S.
Hickel
,
N. A.
Adams
, and
J. A.
Domaradzki
, “
An adaptive local deconvolution method for implicit LES
,”
J. Comput. Phys.
213
,
413
436
(
2006
).
48.
R. S.
Rogallo
, “
Numerical experiments in homogeneous turbulence
,” NASA Tech. Memo. TM 81315,
1981
.
49.
S. S.
Collis
, “
Multiscale methods for turbulence simulation and control
,” Technical Report 034, MEMS,
Rice University
,
2002
.
50.
D. A.
Shaw
and
T. J.
Hanratty
, “
Turbulent mass transfer rates to a wall for large Schmidt numbers
,”
AIChE J.
23
,
28
37
(
1977
).
51.
B. A.
Kader
and
A. M.
Yaglom
, “
Heat and mass transfer laws for fully turbulent wall flows
,”
Int. J. Heat Mass Transfer
15
,
2329
2351
(
1972
).
52.
I.
Calmet
and
J.
Magnaudet
, “
Large-eddy simulation of high-Schmidt number mass transfer in a turbulent channel flow
,”
Phys. Fluids
9
,
438
455
(
1997
).
53.
D.
Papavassiliou
and
T. J.
Hanratty
, “
Transport of a passive scalar in a turbulent channel flow
,”
Int. J. Heat Mass Transfer
40
,
1303
1311
(
1997
).
You do not currently have access to this content.