Multi-scale analysis is widely adopted in turbulence research for studying flow structures corresponding to specific length scales in the Kolmogorov spectrum. In the present work, a new methodology based on novel optimization techniques for scale decomposition is introduced, which leads to a bandpass filter with prescribed properties. With this filter, we can efficiently perform scale decomposition using Fourier transform directly while adequately suppressing Gibbs ringing artifacts. Both 2D and 3D scale decomposition results are presented, together with qualitative and quantitative analysis. The comparison with existing multi-scale analysis technique is conducted to verify the effectiveness of our method. Validation of this decomposition technique is demonstrated both qualitatively and quantitatively. The advantage of the proposed methodology enables a precise specification of continuous length scales while preserving the original structures. These unique features of the proposed methodology may provide future insights into the evolution of turbulent flow structures.

1.
L. F.
Richardson
,
Weather Prediction by Numerical Process
, 2nd ed. (
Cambridge University Press
,
1922
).
2.
A. N.
Kolmogorov
, “
The local structure of turbulence in incompressible viscous fluids at very large Reynolds numbers
Dokl. Nauk. SSSR
30
,
301
305
(
1941
).
3.
A. N.
Kolmogorov
, “
A refinement of previous hypotheses concerning the structure of turbulence in a viscous incompressible fluid at high Reynolds number
,”
J. Fluid Mech.
13
,
82
85
(
1962
).
4.
P.
Sagaut
,
S.
Deck
, and
M.
Terracol
,
Multiscale And Multiresolution Approaches in Turbulence
(
Imperial College Press
,
2006
).
5.
M.
Farge
, “
Wavelet transforms and their applications to turbulence
,”
Annu. Rev. Fluid Mech.
24
,
395
458
(
1992
).
6.
J. W.
Gibbs
, “
Fourier's series
,”
Nature (London)
59
,
606
(
1899
).
7.
M.
Farge
,
N.
Kevlahan
,
V.
Perrier
, and
E.
Goirand
, “
Wavelets and turbulence
,”
IEEE
84
(
4
),
639
669
(
1996
).
8.
K.
Schneider
, “
Turbulence analysis, modelling and computing using wavelets
,”
Wavelets Phys.
84
,
117
(
2004
).
9.
E.
Candès
,
L.
Demanet
,
D.
Donoho
, and
L.
Ying
, “
Fast discrete curvelet transforms
,”
Multiscale Model. Simul.
5
,
861
899
(
2006
).
10.
I.
Bermejo-Moreno
and
D. I.
Pullin
, “
On the non-local geometry of turbulence
,”
J. Fluid Mech.
603
,
101
135
(
2008
).
11.
I.
Bermejo-Moreno
,
D. I.
Pullin
, and
K.
Horiuti
, “
Geometry of enstrophy and dissipation, grid resolution effects and proximity issues in turbulence
,”
J. Fluid Mech.
620
,
121
166
(
2009
).
12.
J.
Ma
,
M. Y.
Hussaini
,
O. V.
Vasilyev
, and
F. L.
Dimet
, “
Multiscale geometric analysis of turbulence by curvelets
,”
Phys. Fluids
21
,
075104
(
2009
).
13.
J.
Ma
and
M. Y.
Hussaini
, “
Three-dimensional curvelets for coherent vortex analysis of turbulence
,”
Appl. Phys. Lett.
91
,
184101
(
2007
).
14.
Y.
Yang
,
D. I.
Pullin
, and
I.
Bermejo-Moreno
, “
Multi-scale geometric analysis of lagrangian structures in isotropic turbulence
,”
J. Fluid Mech.
654
,
233
270
(
2010
).
15.
Y.
Yang
and
D. I.
Pullin
, “
Geometric study of lagrangian and eulerian structures in turbulent channel flow
,”
J. Fluid Mech.
674
,
67
92
(
2011
).
16.
T.
Leung
,
N.
Swaminathan
, and
P. A.
Davidson
, “
Geometry and interaction of structures in homogeneous isotropic turbulence
,”
J. Fluid Mech.
710
,
453
481
(
2012
).
17.
R. P.
Brent
,
Algorithms for Minimization Without Derivatives
(
Dover Publications
,
2002
).
18.
Y.
Li
,
E.
Perlman
,
M.
Wan
,
Y.
Yang
,
R.
Burns
,
C.
Meneveau
,
R.
Burns
,
S.
Chen
,
A.
Szalay
, and
G.
Eyink
, “
A public turbulence database cluster and applications to study lagrangian evolution of velocity increments in turbulence
,”
J. Turbul.
9
,
1
29
(
2008
).
You do not currently have access to this content.