A low-density, flexible cantilevered cylinder was permitted to vibrate freely under the influence of vortex shedding in the laminar flow regime. We find that the vortex-induced vibrations (VIV) of a flexible cantilever depart from those of a flexible cylinder that is fixed at both ends. In particular, we find discontinuous regions of VIV behavior – here called states – as a function of the reduced velocity U*. These states are demarcated by discrete changes in the dominant eigenmodes of the structural response as the cylinder vibrates in progressively higher structural modes with increasing U*. The contribution of structural modes can be identified readily by a modal projection of the cylinder oscillation onto known cantilever beam modes. Oscillation frequencies do not monotonically increase with U*. The wake response between different states is also found to have distinct characteristics; of particular note is the occurrence of a P+S wake over one of these regions, which is associated with a high-amplitude vibration of the cylinder that is due to the constructive interference of contributing eigenmodes.

1.
R.
Govardhan
and
C. H. K.
Williamson
, “
Modes of vortex formation and frequency response for a freely-vibrating cylinder
,”
J. Fluid Mech.
420
,
85
(
2000
).
2.
C. H. K.
Williamson
and
A.
Roshko
, “
Vortex formation in the wake of an oscillating cylinder
,”
J. Fluids Struct.
2
,
355
(
1988
).
3.
W.
Hanke
,
M.
Brede
,
L.
Miersch
,
M.
Witte
,
J.
Oeffner
,
M.
Michael
,
F.
Hanke
,
A.
Leder
, and
G.
Dehnhardt
, “
Harbor seal vibrissa morphology suppresses vortex induced vibrations
,”
J. Exp. Biol.
213
,
2665
(
2010
).
4.
R.
King
,
M. J.
Prosser
, and
D. J.
Johns
, “
On vortex excitation of model piles in water
,”
J. Sound Vib.
29
,
169
(
1973
).
5.
A.
Ongoren
and
D.
Rockwell
, “
Flow structure from an oscillating cylinder. Part 2. Mode competition in the near wake
,”
J. Fluid Mech.
191
,
225
(
1988
).
6.
N.
Jauvtis
and
C. H. K.
Williamson
, “
The effect of two degrees of freedom on vortex-induced vibration at low mass and damping
,”
J. Fluid Mech.
509
,
23
(
2004
).
7.
J. K.
Vandiver
,
V.
Jaiswal
, and
V.
Jhingran
, “
Insights on vortex-induced, traveling waves on long risers
,”
J. Fluids Struct.
25
,
641
(
2009
).
8.
A. D.
Trim
,
H.
Braaten
,
H.
Lie
, and
M. A.
Tognarelli
, “
Experimental investigation of vortex-induced vibrations of long marine risers
,”
J. Fluids Struct.
21
,
335
(
2005
).
9.
J. R.
Chaplin
,
P. W.
Bearman
,
F. J.
Huera-Huarte
, and
R. J.
Pattenden
, “
Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current
,”
J. Fluids Struct.
21
,
3
(
2005
).
10.
C.
Grouthier
,
S.
Michelin
,
Y.
Modarres-Sadeghi
, and
E.
de Langre
, “
Self-similar vortex-induced vibrations of a hanging string
,”
J. Fluid Mech.
724
,
R2
(
2013
).
11.
J. K.
Shang
,
A. J.
Smits
, and
H. A.
Stone
, “
The appearance of P+S modes in the wake of a freely vibrating, highly flexible cylinder
,”
J. Fluids Struct.
43
,
481
(
2013
).
12.
C. H. K.
Williamson
and
R.
Govardhan
, “
Vortex-induced vibrations
,”
Annu. Rev. Fluid Mech.
36
,
413
(
2004
).
13.
A.
Smits
and
T.
Lim
,
Flow Visualization: Techniques and Examples
(
Imperial College Press
,
London
,
2000
).
14.
A. L. C.
Fujarra
,
C. P.
Pesce
,
F.
Flemming
, and
C. H. K.
Williamson
, “
Vortex-induced vibration of a flexible cantilever
,”
J. Fluids Struct.
15
,
651
(
2001
).
15.
H.
Lie
and
K. E.
Kaasen
, “
Modal analysis of measures from a large scale VIV model test of a riser in linearly sheared flow
,”
J. Fluids Struct.
22
,
557
(
2006
).
16.
R.
Bourguet
,
G. E.
Karniadakis
, and
M. S.
Triantafyllou
, “
Vortex-induced vibrations of a long flexible cylinder in shear flow
,”
J. Fluid Mech.
677
,
342
(
2011
).
17.
J. J.
Allen
and
A. J.
Smits
, “
Energy harvesting eel
,”
J. Fluids Struct.
15
,
629
(
2001
).
18.
D.
Gerich
and
H.
Eckelmann
, “
Influence of end plates and free ends on the shedding frequency of circular cylinders
,”
J. Fluid Mech.
122
,
109
(
1982
).
19.
D.
Newman
and
G. E.
Karniadakis
, “
Simulations of flow over a flexible cable: A comparison of forced and flow-induced vibration
,”
J. Fluids Struct.
10
,
439
(
1996
).
20.
J. R.
Meneghini
and
P. W.
Bearman
, “
Numerical simulation of high amplitude oscillatory flow about a circular cylinder
,”
J. Fluids Struct.
9
,
435
(
1995
).
21.
O. M.
Griffin
and
S. E.
Ramberg
, “
The vortex street wakes of vibrating cylinders
,”
J. Fluid Mech.
66
,
553
(
1974
).
22.
C. C.
Feng
, “
The measurement of vortex-induced effects in flow past stationary and oscillating circular and d-section cylinders
,” Master's thesis,
University of British Columbia
,
1968
.
23.
F. L.
Ponta
and
H.
Aref
, “
Numerical experiments on vortex shedding from an oscillating cylinder
,”
J. Fluids Struct.
22
,
327
(
2006
).
24.
A.
Khalak
and
C. H. K.
Williamson
, “
Dynamics of a hydroelastic cylinder with very low mass and damping
,”
J. Fluids Struct.
10
,
455
(
1996
).
25.
A.
Khalak
and
C. H. K.
Williamson
, “
Fluid forces and dynamics of a hydroelastic structure with very low mass and damping
,”
J. Fluids Struct.
11
,
973
(
1997
).
26.
A.
Khalak
and
C. H. K.
Williamson
, “
Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping
,”
J. Fluids Struct.
13
,
813
(
1999
).
You do not currently have access to this content.