Most previous studies on gas transport in nano-scale confinements assume dynamic similarity with rarefied gas flows, and employ kinetic theory based models. This approach is incomplete, since it neglects the van der Waals forces imposed on gas molecules by the surfaces. Using three-dimensional molecular dynamics (MD) simulations of force driven gas flows, we show the significance of wall force field in nano-scale confinements by defining a new dimensionless parameter (B) as the ratio of the wall force-penetration length to the channel height. Investigation of gas transport in different nano-channels at various Knudsen numbers show the importance of wall force field for finite B values, where the dynamic similarity between the rarefied and nano-scale gas flows break down. Comparison of MD results employing molecularly structured three-dimensional walls versus reflection of gas molecules from a two-dimensional planar surface with Maxwell distribution show that the nano-confinement effects cannot be resolved by the latter approach, frequently used in kinetic theory calculations. Molecularly structured walls determine the bulk flow physics by setting a proper tangential momentum accommodation coefficient, and they also determine the transport in the near wall region. Gas nano-flows with finite B exhibit significant differences in the local density and velocity profiles, affecting the mass flow rate and the formation of Knudsen's minimum in nano-channels.

1.
M.
Majumder
,
N.
Chopra
, and
B. J.
Hinds
, “
Mass transport through carbon nanotube membranes in three different regimes: Ionic diffusion and gas and liquid flow
,”
ACS Nano
5
(
5
),
3867
3877
(
2011
).
2.
N.
Halonen
,
A.
Rautio
,
A. R.
Leino
,
T.
Kyllonen
,
G.
Toth
,
J.
Lappalainen
, and
R.
Vajtai
, “
Three-dimensional carbon nanotube scaffolds as particulate filters and catalyst support membranes
,”
ACS Nano
4
(
4
),
2003
2008
(
2010
).
3.
D.
Yoon
,
C.
Lee
,
J.
Yun
,
W.
Jeon
,
B. J.
Cha
, and
S.
Baik
, “
Enhanced condensation, agglomeration, and rejection of water vapor by superhydrophobic aligned multiwalled carbon nanotube membranes
,”
ACS Nano
6
(
7
),
5980
5987
(
2012
).
4.
B.
Li
,
B.
Jiang
,
D. J.
Fauth
,
M. L.
Gray
,
H. W.
Pennline
, and
G. A.
Richards
, “
Innovative nano-layered solid sorbents for CO2 capture
,”
Chem. Commun.
47
(
6
),
1719
1721
(
2011
).
5.
S. R.
Venna
and
M. A.
Carreon
, “
Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation
,”
J. Am. Chem. Soc.
132
(
1
),
76
78
(
2010
).
6.
W.
Yave
,
A.
Car
,
J.
Wind
, and
K. V.
Peinemann
, “
Nanometric thin film membranes manufactured on square meter scale: Ultra-thin films for CO2 capture
,”
Nanotechnology
21
(
39
),
395301
(
2010
).
7.
M. T.
Ho
,
G. W.
Allinson
, and
D. E.
Wiley
, “
Reducing the cost of CO2 capture from flue gases using membrane technology
,”
Ind. Eng. Chem. Res.
47
(
5
),
1562
1568
(
2008
).
8.
R. G.
Loucks
,
R. M.
Reed
,
S. C.
Ruppel
, and
D. M.
Jarvie
, “
Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale
,”
J. Sedimen. Res.
79
(
12
),
848
861
(
2009
).
9.
G.
King
, “
Thirty years of gas shale fracturing: What have we learned?
,” in
Proceedings of the SPE Annual Technical Conference and Exhibition, Florence, Italy
, 19–22 September
2010
.
10.
S. L.
Montgomery
,
D. M.
Jarvie
,
K. A.
Bowker
, and
R. M.
Pollastro
, “
Mississippian Barnett Shale, Fort Worth basin, north-central Texas: Gas-shale play with multi-trillion cubic foot potential
,”
AAPG Bull.
89
(
2
),
155
175
(
2005
).
11.
K. K.
Chong
,
W.
Grieser
,
A.
Passman
,
H.
Tamayo
,
N.
Modeland
, and
B.
Burke
, “
A completions guide book to shale-play development: A review of successful approaches toward shale-play stimulation in the last two decades
,” in
Proceedings of the Canadian Unconventional Resources and International Petroleum Conference, Calgary, AB, Canada
, 19–21 October
2010
.
12.
G.
Michel
,
R.
Sigal
,
F.
Civan
, and
D.
Devegowda
, “
Parametric investigation of shale gas production considering nano-scale pore size distribution, formation factor, and non-Darcy flow mechanisms
,” in
Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA
, 30 October–2 November
2011
.
13.
F.
Civan
, “
Effective correlation of apparent gas permeability in tight porous media
,”
Transp. Porous Media
82
(
2
),
375
384
(
2010
).
14.
F.
Civan
, “
A review of approaches for describing gas transfer through extremely tight porous media
,”
AIP Conf. Proc.
1254
,
53
(
2010
).
15.
F.
Civan
,
C. S.
Rai
, and
C. H.
Sondergeld
, “
Shale-gas permeability and diffusivity inferred by improved formulation of relevant retention and transport mechanisms
,”
Transp. Porous Media
86
(
3
),
925
944
(
2011
).
16.
S. A.
Schaaf
and
P. L.
Chambre
,
Flow of Rarefied Gases
(
Princeton University Press
,
Princeton, NJ
,
1966
).
17.
G. E.
Karniadakis
,
A.
Beskok
, and
N.
Aluru
,
Micro Flows and Nano Flows: Fundamentals and Simulation
(
Springer-Verlag
,
New York
,
2005
).
18.
A.
Beskok
, “
Simulations and models for gas flows in microgeometries
,” Ph.D. thesis (
Princeton University
, Princeton, NJ,
1996
).
19.
Y.
Sone
,
S.
Takata
, and
T.
Ohwada
, “
Numerical analysis of the plane Couette flow of a rarefied gas on the basis of the linearized Boltzmann equation for hard sphere molecules
,”
Eur. J. Mech. B/Fluids
9
,
273
288
(
1990
).
20.
S.
Fukui
and
R.
Kaneko
, “
A database for interpolation of Poiseuille flow rates for high Knudsen number lubrication problems
,”
J. Tribol.
112
,
78
83
(
1990
).
21.
S.
Fukui
and
R.
Kaneko
, “
Analysis of ultra-thin gas film lubrication based on the linearized Boltzmann equation: Influence of accommodation coefficient
,”
JSME Int. J.
30
,
1660
1666
(
1987
).
22.
D.
Singh
,
X.
Guo
,
A.
Alexeenko
,
J. Y.
Murthy
, and
T. S.
Fisher
, “
Modeling of subcontinuum thermal transport across semiconductor-gas interfaces
,”
J. Appl. Phys.
106
,
024314
(
2009
).
23.
M. A.
Gallis
,
J. R.
Torczynski
,
D. J.
Rader
,
M.
Tij
, and
A.
Santos
, “
Normal solutions of the Boltzmann equation for highly nonequilibrium Fourier flow and Couette flow
,”
Phys. Fluids
18
,
017104
(
2006
).
24.
D.
Valougeorgis
and
S.
Naris
, “
Analytical lattice Boltzmann solutions for thermal flow problems
,”
Transp. Theory Stat. Phys.
32
,
645
656
(
2003
).
25.
S.
Narisa
,
D.
Valougeorgisa
,
D.
Kalempab
, and
F.
Sharipov
, “
Gaseous mixture flow between two parallel plates in the whole range of the gas rarefaction
,”
Physica A
336
,
294
318
(
2004
).
26.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Oxford Science Publications
,
Midsomer Norton, Avon, UK
,
1994
).
27.
J. H.
Park
,
P.
Bahukudumbi
, and
A.
Beskok
, “
Rarefaction effects on shear driven oscillatory gas flows: A DSMC study in the entire Knudsen regime
,”
Phys Fluids
16
(
2
),
317
330
(
2004
).
28.
P.
Bahukudumbi
,
J. H.
Park
, and
A.
Beskok
, “
A unified engineering model for steady and quasi-steady shear-driven gas microflows
,”
Microscale Thermophys. Eng.
7
,
291
315
(
2003
).
29.
X.
Guo
and
A.
Alexeenko
, “
Compact model of squeeze-film damping based on rarefied flow simulations
,”
J. Micromech. Microeng.
19
,
045026
(
2009
).
30.
M. A.
Gallis
and
J. R.
Torczynski
, “
An improved Reynolds-equation model for gas damping of microbeam motion
,”
J. Microelectromech. Syst.
13
(
4
),
653
659
(
2004
).
31.
W. D.
Zhou
,
B.
Liu
,
S. K.
Yu
, and
W.
Hua
, “
Rarefied-gas heat transfer in micro- and nanoscale Couette flows
,”
Phys. Rev. E
81
,
011204
(
2010
).
32.
D. J.
Rader
,
M. A.
Gallis
,
J. R.
Torczynski
, and
W.
Wagner
, “
Direct simulation Monte Carlo convergence behavior of the hard-sphere-gas thermal conductivity for Fourier heat flow
,”
Phys. Fluids
18
,
077102
(
2006
).
33.
G. A.
Bird
,
M. A.
Gallis
,
J. R.
Torczynski
, and
D. J.
Rader
, “
Accuracy and efficiency of the sophisticated direct simulation Monte Carlo algorithm for simulating noncontinuum gas flows
,”
Phys. Fluids
21
,
017103
(
2009
).
34.
A.
Beskok
and
G. E.
Karniadakis
, “
Simulation of heat and momentum transfer in complex micro-geometries
,”
J. Thermophys. Heat Transfer
8
(
4
),
647
655
(
1994
).
35.
M.
Barisik
,
B.
Kim
, and
A.
Beskok
, “
Smart wall model for molecular dynamics simulations of nanoscale gas flows
,”
Commun. Comput. Phys.
7
,
977
993
(
2010
).
36.
M.
Barisik
and
A.
Beskok
, “
MD simulations of nano-scale gas flows: A case study of Couette flow at Kn = 10
,”
AIP Conf. Proc.
1333
,
707
711
(
2011
).
37.
M.
Barisik
and
A.
Beskok
, “
Surface-gas interaction effects on nanoscale gas flows
,”
Microfluidics Nanofluidics
13
(
5
),
789
798
(
2012
).
38.
M.
Barisik
and
A.
Beskok
, “
Molecular dynamics simulations of shear driven gas flows in nano-channels
,”
Microfluidics Nanofluidics
11
(
5
),
611
622
(
2011
).
39.
M.
Barisik
and
A.
Beskok
, “
Equilibrium molecular dynamics studies on nanoscale-confined fluids
,”
Microfluidics Nanofluidics
11
(
3
),
269
282
(
2011
).
40.
J. C.
Maxwell
, “
On stresses in rarified gases arising from inequalities of temperature
,”
Philos. Trans. R. Soc. London
170
,
231
(
1879
).
41.
C.
Cercignani
and
M.
Lampis
, “
Kinetic models for gas-surface interactions
,”
Transp. Theory Stat. Phys.
1
,
101
114
(
1971
).
42.
A.
Beskok
and
G. E.
Karniadakis
, “
A model for flows in channels, pipes and ducts at micro and nano scales
,”
Microscale Thermophys. Eng.
3
(
1
),
43
77
(
1999
).
43.
F. J.
Alexander
and
A. L.
Garcia
, “
The direct simulation Monte Carlo method
,”
Comput. Phys.
11
(
6
),
588
(
1997
).
44.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford Science Publications
,
New York
,
1989
).
45.
D. J.
Evans
and
W. G.
Hoover
, “
Flows far from equilibrium via molecular-dynamics
,”
Annu. Rev. Fluid Mech.
18
,
243
264
(
1986
).
46.
T.
Ohwada
,
Y.
Sone
, and
K.
Aoki
, “
Numerical analysis of the Poiseuille and thermal transpiration flows between two parallel plates on the basis of the Boltzmann equation for hard-sphere molecules
,”
Phys. Fluids A
1
,
2042
(
1989
).
47.
F.
Sharipov
, “
Application of the Cercignani-Lampis scattering kernel to channel gas flows
,”
AIP Conf. Proc.
585
,
347
(
2001
).
48.
M.
Knudsen
, “
Die Gesetze der Molekularstromung und der innern Reibungsstromung der Gase durch Rohren
,”
Ann. Phys.
333
,
75
130
(
1909
).
49.
W.
Gaede
, “
Die äussere Reibung der Gase
,”
Ann. Phys.
346
,
289
(
1913
).
50.
S. A.
Tison
, “
Experimental data and theoretical modeling of gas flows through metal capillary leaks
,”
Vacuum
44
(
11
),
1171
1175
(
1993
).
51.
C.
Cercignani
and
A.
Daneri
, “
Flow of a rarefied gas between two parallel plates
,”
J. Appl. Phys.
34
(
12
),
3509
3513
(
1963
).
52.
S. K.
Loyalka
and
S. A.
Hamoodi
, “
Poiseuille flow of a rarefied gas in a cylindrical tube: Solution of linearized Boltzmann equation
,”
Phys. Fluids A
2
,
2061
2065
(
1990
).
53.
W. G.
Pollard
and
R. D.
Present
, “
On gaseous self-diffusion in long capillary tubes
,”
Phys. Rev.
73
(
7
),
762
774
(
1948
).
You do not currently have access to this content.