The dynamics of a thin liquid film on the underside of a curved cylindrical substrate is studied. The evolution of the liquid layer is investigated as the film thickness and the radius of curvature of the substrate are varied. A dimensionless parameter (a modified Bond number) that incorporates both geometric parameters, gravity, and surface tension is identified, and allows the observations to be classified according to three different flow regimes: stable films, films with transient growth of perturbations followed by decay, and unstable films. Experiments and linear stability theory confirm that below a critical value of the Bond number curvature of the substrate suppresses the Rayleigh-Taylor instability.

1.
G. I.
Taylor
, “
The instability of liquid surfaces when accelerated in a direction perpendicular to their planes
Proc. R. Soc. London Ser. A
201
,
192
196
(
1950
).
2.
L.
Rayleigh
, “
Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density
,”
Proc. London Math. Soc.
s1-14
(
1
),
170
177
(
1882
).
3.
P. G.
Drazin
and
W. H.
Reid
,
Hydrodynamic Stability
(
Cambridge University Press
,
Cambridge
,
2004
).
4.
D. H.
Sharp
, “
An overview of Rayleigh-Taylor instability
,”
Phys. D
12
,
3
18
(
1984
).
5.
J. D.
Lindl
and
W. C.
Mead
, “
Two-dimensional simulation of fluid instability in laser-fusion pellets
,”
Phys. Rev. Lett.
34
,
1273
(
1975
).
6.
G. A.
Houseman
and
P.
Molnar
, “
Gravitational Rayleigh-Taylor instability of a layer with non-linear viscosity and convective thinning of continental lithosphere
,”
Geophys. J. Intl.
128
,
125
150
(
1997
).
7.
M.
Fermigier
,
L.
Limat
,
J. E.
Wesfreid
,
P.
Boudinet
, and
C.
Quilliet
, “
Two-dimensional patterns in Rayleigh-Taylor instability of a thin layer
,”
J. Fluid Mech.
236
,
349
383
(
1992
).
8.
A. A.
King
,
L. J.
Cummings
,
S.
Naire
, and
O. E.
Jensen
, “
Liquid film dynamics in horizontal and tilted tubes: Dry spots and sliding drops
,”
Phys. Fluids
19
,
042102
(
2007
).
9.
A.
Indeikina
,
I.
Veretennikov
, and
H.-C.
Chang
, “
Drop fall-off from pendent rivulets
,”
J. Fluid Mech.
338
,
173
201
(
1997
).
10.
R.
Majeski
,
H.
Kugel
,
R.
Kaita
,
M. G.
Avasarala
,
M. G.
Bell
,
R. E.
Bell
,
L.
Berzak
,
P.
Beiersdorfer
,
S. P.
Gerhardt
,
E.
Granstedt
,
T.
Gray
,
C.
Jacobson
,
J.
Kallman
,
S.
Kaye
,
T.
Kozub
,
B. P.
LeBlanc
,
J.
Lepson
,
D. P.
Lundberg
,
R.
Maingi
,
D.
Mansfield
,
S. F.
Paul
,
G. V.
Pereverzev
,
H.
Schneider
,
V.
Soukhanovskii
,
T.
Strickler
,
D.
Stotler
,
J.
Timberlake
,
L. E.
Zakharov
,
The NSTX and LTX Research Teams
, “
The impact of lithium wall coatings on NSTX discharges and the engineering of the Lithium Tokamak eXperiment (LTX)
,”
Fus. Eng. Des.
85
(
7–9
),
1283
1289
(
2010
).
11.
R.
Kaita
,
L.
Berzak
,
D.
Boyle
,
T.
Gray
,
E.
Granstedt
,
G.
Hammett
,
C. M.
Jacobson
,
A.
Jones
,
T.
Kozub
,
H.
Kugel
,
B.
Leblanc
,
N.
Logan
,
M.
Lucia
,
D.
Lundberg
,
R.
Majeski
,
D.
Mansfield
,
J.
Menard
,
J.
Spaleta
,
T.
Strickler
,
J.
Timberlake
,
J.
Yoo
,
L.
Zakharov
,
R.
Maingi
,
V.
Soukhanovskii
,
K.
Tritz
, and
S.
Gershman
, “
Experiments with liquid metal walls: Status of the lithium tokamak experiment
,”
Fus. Eng. Des.
85
,
874
881
(
2010
).
12.
L. W.
Schwartz
and
D. E.
Weidner
, “
Modeling of coating flows on curved surfaces
,”
J. Eng. Math.
29
,
91
103
(
1995
).
13.
O. E.
Jensen
, “
The thin liquid lining of a weakly curved cylindrical tube
,”
J. Fluid Mech.
331
,
373
403
(
1997
).
14.
H. K.
Moffatt
, “
Behaviour of a viscous film on the outer surface of a rotating cylinder
,”
J. Mech.
16
,
651
673
(
1977
).
15.
J.
Ashmore
,
A. E.
Hosoi
, and
H. A.
Stone
, “
The effect of surface tension on rimming flows in a partially filled rotating cylinder
,”
J. Fluid Mech.
479
,
65
98
(
2003
).
16.
E. S.
Benilov
,
N.
Kopteva
, and
S. B. G.
O’Brien
, “
Does surface tension stabilize liquid films inside a rotating horizontal cylinder?
Q. J. Mech. Appl. Math.
58
,
185
200
(
2005
).
17.
R. V.
Roy
,
A. J.
Roberts
, and
M. E.
Simpson
, “
A lubrication model of coating flows over a curved substrate in space
,”
J. Fluid Mech.
454
,
235
261
(
2002
).
18.
P. D.
Howell
, “
Surface-tension-driven flow on a moving curved surface
,”
J. Eng. Math.
45
,
283
308
(
2003
).
19.
T. G.
Myers
,
J. P. F.
Charpin
, and
S. J.
Chapman
, “
The flow and solidification of a thin fluid film on an arbitrary three-dimensional surface
,”
Phys. Fluids
14
,
2788
2803
(
2002
).
20.
H.
Ockendon
and
J. R.
Ockendon
,
Viscous Flow
(
Cambridge University Press
,
Cambridge
,
1995
).
21.
P.-G.
De Gennes
,
F.
Brochard-Wyart
, and
D.
Quéré
,
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
(
Springer-Verlag
,
New York
,
2004
).
22.
J. M.
Burgess
,
A.
Juel
,
W. D.
McCormick
,
J. B.
Swift
, and
H. L.
Swinney
, “
Suppression of dripping from a ceiling
,”
Phys. Rev. Lett.
86
,
1203
(
2001
).
23.
N. A.
Bezdenezhnykh
,
V. A.
Briskman
,
A. A.
Cherepanov
, and
M. T.
Sharov
, “
Control of the stability of liquid surfaces by means of variable fields
,”
Fluid Mech. Sov. Res.
15
,
11
32
(
1986
).
24.
G. H.
Wolf
, “
Dynamic stabilization of the interchange instability of a liquid-gas interface
,”
Phys. Rev. Lett.
24
,
444
(
1970
).
You do not currently have access to this content.