This paper reports first observations of transition in recirculation pattern from an open-bubble type axisymmetric vortex breakdown to partially open bubble mode through an intermediate, critical regime of conical sheet formation in an unconfined, co-axial isothermal swirling flow. This time-mean transition is studied for two distinct flow modes which are characterized based on the modified Rossby number (Rom), i.e., Rom ≤ 1 and Rom > 1. Flow modes with Rom ≤ 1 are observed to first undergo cone-type breakdown and then to partially open bubble state as the geometric swirl number (SG) is increased by ∼20% and ∼40%, respectively, from the baseline open-bubble state. However, the flow modes with Rom > 1 fail to undergo such sequential transition. This distinct behavior is explained based on the physical significance associated with Rom and the swirl momentum factor (ξ). In essence, ξ represents the ratio of angular momentum distributed across the flow structure to that distributed from central axis to the edge of the vortex core. It is observed that ξ increases by ∼100% in the critical swirl number band where conical breakdown occurs as compared to its magnitude in the SG regime where open bubble state is seen. This results from the fact that flow modes with Rom ≤ 1 are dominated by radial pressure gradient due to swirl/rotational effect when compared to radial pressure deficit arising from entrainment (due to the presence of co-stream). Consequently, the imparted swirl tends to penetrate easily towards the central axis causing it to spread laterally and finally undergo conical sheet breakdown. However, the flow modes with Rom > 1 are dominated by pressure deficit due to entrainment effect. This blocks the radial inward penetration of imparted angular momentum thus preventing the lateral spread of these flow modes. As such these structures fail to undergo cone mode of vortex breakdown which is substantiated by a mere 30%–40% rise in ξ in the critical swirl number range.

1.
O.
Lucca-Negro
and
T. O.
Doherty
, “
Vortex breakdown: A review
,”
Prog. Energy Combust. Sci.
27
,
431
(
2001
).
2.
N.
Syred
, “
A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems
,”
Prog. Energy Combust. Sci.
32
,
93
(
2006
).
3.
N.
Syred
and
J. M.
Beer
, “
Combustion in swirling flows: A review
,”
Combust. Flame
23
,
143
(
1974
).
4.
C.
Kulsheimer
and
H.
Buchner
, “
Combustion dynamics of turbulent swirling flames
,”
Combust. Flame
131
,
70
(
2002
).
5.
U.
Idahosa
,
A.
Saha
,
C.
Xu
, and
S.
Basu
, “
Non-premixed acoustically perturbed swirling flame dynamics
,”
Combust. Flame
157
,
1800
(
2010
).
6.
P.
Palies
,
D.
Durox
,
T.
Schuller
, and
S.
Candel
, “
The combined dynamics of swirler and turbulent premixed swirling flames
,”
Combust. Flame
157
,
1698
(
2010
).
7.
H.
Liang
and
T.
Maxworthy
, “
An experimental investigation of swirling jets
,”
J. Fluid Mech.
525
,
115
(
2005
).
8.
T.
Lieuwen
,
Unsteady Combustor Physics
(
Cambridge University Press
,
2012
).
9.
T.
Sarpkaya
, “
On stationary and travelling vortex breakdown
,”
J. Fluid Mech.
45
,
545
(
1971
).
10.
S.
Leibovich
, “
The structure of vortex breakdown
,”
Annu. Rev. Fluid Mech.
10
,
221
(
1978
).
11.
M. G.
Hall
, “
Vortex breakdown
,”
Annu. Rev. Fluid Mech.
4
,
195
(
1972
).
12.
P.
Billant
,
J. M.
Chomaz
, and
P.
Huerre
, “
Experimental study of vortex breakdown in swirling jets
,”
J. Fluid Mech.
376
,
183
(
1998
).
13.
T. B.
Benjamin
, “
Theory of vortex breakdown phenomenon
,”
J. Fluid Mech.
14
,
593
(
1962
).
14.
M.
Escudier
, “
Vortex breakdown: Observations and explanations
,”
Prog. Aerosp. Sci.
25
(
2
),
189
(
1988
).
15.
I. S.
Gartshore
, “
Recent work in swirling incompressible flow
,” N.R.C. Report LR-34 No. 6968 (National Research Council of Canada,
1962
).
16.
M. G.
Hall
, “
A new approach to vortex breakdown
,” in
Proceedings of the 1967 Heat Transfer and Fluid Mechanics Institute
, edited by
Paul A.
Libby
,
Daniel B.
Olfe
, and
Charles W.
Van Atta
(
Stanford University Press
,
Stanford, CA
,
1967
), pp.
319
340
.
17.
H. H.
Bossel
, “
Vortex breakdown flowfield
,”
Phys. Fluids
12
(
3
),
498
(
1969
).
18.
M. P.
Escudier
and
J. J.
Keller
, “
Vortex breakdown: A two-stage transition
,” Ft. Belvoir Defense Technical Information Center Report No. ADP002263,
1983
.
19.
L. N.
Howard
and
A. K.
Gupta
, “
On the hydrodynamic and hydromagnetic stability of swirling flows
,”
J. Fluid Mech.
14
,
463
(
1962
).
20.
M.
Lessen
and
F.
Paillet
, “
The stability of a trailing line vortex. Part 2, Viscous theory
,”
J. Fluid Mech.
65
(
4
),
769
(
1974
).
21.
P. W.
Duck
and
M. R.
Foster
, “
The inviscid stability of a trailing line vortex
,”
J. Appl. Math. Phys.
31
,
524
(
1980
).
22.
P. I.
Singh
and
M. S.
Uberoi
, “
Experiments on vortex stability
,”
Phys. Fluids
19
,
1858
(
1976
).
23.
J.
Panda
and
D. K.
McLaughlin
, “
Experiments on the instabilities of a swirling jet
,”
Phys. Fluids
6
,
263
(
1994
).
24.
Y.
Afanasyev
and
W.
Peltier
, “
Three-dimensional instability of swirling flow in rotating fluid: Laboratory experiments and related theoretical predictions
,”
Phys. Fluids
10
,
3194
(
1998
).
25.
T.
Loiseleux
and
J. M.
Chomaz
, “
Breaking of rotational symmetry in a swirling jet experiment
,”
Phys. Fluids
15
(
2
),
511
(
2003
).
26.
C.
Olendraru
,
A.
Sellier
, and
P.
Huerre
, “
Inviscid instability of the Batchelor vortex: Absolute/convective transition and spatial branches
,”
Phys. Fluids
11
,
1805
(
1999
).
27.
T.
Loiseleux
,
J. M.
Chomaz
, and
P.
Huerre
, “
The effect of swirl on jets and wakes: Linear instability of the Rankine vortex with axial flow
,”
Phys. Fluids
10
,
1120
(
1998
).
28.
R. H.
Chen
,
J. F.
Driscoll
,
J.
Kelly
,
M.
Namazian
, and
R. W.
Schefer
, “
A comparison of bluff-body and swirl-stabilized flames
,”
Combust. Sci. Technol.
71
,
197
(
1990
).
29.
A. K.
Gupta
,
D. G.
Lilley
, and
N.
Syred
,
Swirl Flows
(
Abacus Press
,
1984
).
30.
F. H.
Champagne
and
S.
Kromat
, “
Experiments on the formation of a recirculation zone in swirling coaxial jets
,”
Exp. Fluids
29
,
494
(
2000
).
31.
R. F.
Huang
and
F. C.
Tsai
, “
Flow field characteristics of swirling double concentric jets
,”
Exp. Therm. Fluid Sci.
25
,
151
(
2001
).
32.
A.
Giannadakis
,
K.
Perrakis
, and
Th.
Panidis
, “
A swirling jet under the influence of a coaxial flow
,”
Exp. Therm. Fluid Sci.
32
,
1548
(
2008
).
33.
R.
Santhosh
,
A.
Miglani
, and
S.
Basu
, “
Transition and acoustic response of recirculation structures in an unconfined co-axial isothermal swirling flow
,”
Phys. Fluids
25
,
083603
(
2013
).
34.
U.
Idahosa
, “
Combustion dynamics and fluid mechanics in acoustically perturbed non-premixed swirl-stabilized flames
,” Ph.D. thesis,
University of Central Florida
, FL, USA,
2010
.
35.
J.
O’Connor
and
T.
Lieuwen
, “
Recirculation zone dynamics of a transversely excited swirl flow and flame
,”
Phys. Fluids
24
,
075107
(
2012
).
36.
S.
Candel
,
D.
Durox
,
T.
Schuller
,
J.-F.
Bourgouin
, and
J. P.
Moeck
, “
Dynamics of swirling flames
,”
Annu. Rev. Fluid Mech.
46
,
147
(
2014
).
37.
T. C.
Claypole
and
N.
Syred
, “
The effect of swirl burner aerodynamics on NOx formation
,” in
Proceedings of the 18th International Symposium on Combustion
(
Elsevier
,
1981
), Vol.
18
(
1
), p.
81
.
38.
D.
Feikema
,
R. H.
Chen
, and
J. F.
Driscoll
, “
Enhancement of flame blowout limits by the use of swirl
,”
Combust. Flame
80
,
183
(
1990
).
39.
F.
Gallaire
,
S.
Rott
, and
J. M.
Chomaz
, “
Experimental study of a free and forced swirling jet
,”
Phys. Fluids
16
,
2907
(
2004
).
40.
R. D.
Keane
and
R. J.
Adrian
, “
Optimization of particle image velocimeters. Part I: Double pulsed systems
,”
Meas. Sci. Technol.
1
,
1202
(
1990
).
41.
A. K.
Prasad
,
R. J.
Adrian
,
C. C.
Landreth
, and
P. W.
Offutt
, “
Effect of resolution on the speed and accuracy of particle image velocimetry interrogation
,”
Exp. Fluids
13
,
105
(
1992
).
42.
G.
Brown
and
J.
Lopez
, “
Axisymmetric vortex breakdown: Part 2: Physical mechanisms
,”
J. Fluid Mech.
221
,
553
(
1990
).
43.
D.
Darmofal
, “
The role of vorticity dynamics in vortex breakdown
,” AIAA Paper 93-3036,
1993
.
44.
F.
Gallaire
and
J. M.
Chomaz
, “
Instability mechanisms in swirling flows
,”
Phys. Fluids
15
,
2622
(
2003
).
45.
D.
Coles
, “
Transition in circular Couette flow
,”
J. Fluid Mech.
21
,
385
(
1965
).
46.
H.
Rehab
,
E.
Villermaux
, and
E. J.
Hopfinger
, “
Flow regimes of large-velocity-ratio coaxial jets
,”
J. Fluid Mech.
345
,
357
(
1997
).
47.
H. J.
Sheen
,
W. J.
Chen
,
S. Y.
Jeng
, and
T. L.
Huang
, “
Correlation of swirl number for a radial-type swirl generator
,”
Exp. Therm. Fluid Sci.
12
,
444
(
1996
).
48.
J. M.
Beer
and
N. A.
Chigier
,
Combustion Aerodynamics
(
Wiley, Inc.
,
New York
,
1972
).
49.
K.
Oberleithner
,
C. O.
Paschereit
,
R.
Seele
, and
T.
Wygnanski
, “
Formation of turbulent vortex breakdown: Intermittency, criticality and global instability
,”
AIAA J.
50
,
1437
(
2012
).
You do not currently have access to this content.