Spiral gravity separators are devices used in mineral processing to separate particles based on their specific gravity or size. The spiral geometry allows for the simultaneous application of gravitational and centripetal forces on the particles, which leads to segregation of particles. However, this segregation mechanism is not fundamentally understood, and the spiral separator literature does not tell a cohesive story either experimentally or theoretically. While experimental results vary depending on the specific spiral separator used, present theoretical works neglect the significant coupling between the particle dynamics and the flow field. Using work on gravity-driven monodisperse slurries on an incline that empirically accounts for this coupling, we consider a monodisperse particle slurry of small depth flowing down a rectangular channel that is helically wound around a vertical axis. We use a thin-film approximation to derive an equilibrium profile for the particle concentration and fluid depth and find that, in the steady state limit, the particles concentrate towards the vertical axis of the helix, leaving a region of clear fluid.

1.
B.
Weldon
, “
Fine coal beneficiation: Spiral separators in the Australian industry
,”
Aust. Coal Rev.
4
,
25
28
(
1997
).
2.
A. B.
Holland-Batt
and
P. N.
Holtham
, “
Particle and fluid motion on spiral separators
,”
Miner. Eng.
4
,
457
482
(
1991
).
3.
W. R.
Dean
, “
The streamline motion of flow in a curved pipe
,”
Philos. Mag.
5
,
673
695
(
1928
).
4.
A. B.
Holland-Batt
, “
Spiral separation: Theory and simulation
,”
Trans. Inst. Min. Metall., Sect. C
98
,
C46
(
1989
).
5.
P. N.
Holtham
, “
Flow visualisation of secondary currents on spiral separators
,”
Miner. Eng.
3
,
279
286
(
1990
).
6.
Y. M.
Stokes
,
S. R.
Wilson
, and
B. R.
Duffy
, “
Thin-film flow in open helically-wound channels
,” in
Proceedings of the 15th Australasian Fluid Mechanics Conference
, edited by
M.
Behnia
,
W.
Lin
, and
G. D.
McBain
(
The University of Sydney
,
2004
); paper AFMC00186, see http://www.aeromech.usyd.edu.au/15afmc/proceedings/.
7.
Y. M.
Stokes
,
B. R.
Duffy
,
S. R.
Wilson
, and
H.
Tronnolone
, “
Thin-film flow in a helically wound rectangular channel with small torsion
,”
Phys. Fluids
25
,
083103
(
2013
).
8.
D. K.
Das
,
K. M.
Godiwalla
,
P.
Lopamudra
,
K. K.
Bhattacharya
,
R.
Singh
, and
S. P.
Mehrotra
, “
Mathematical modeling of separation characteristics of a coal-washing spiral
,”
Int. J. Miner. Process.
84
,
118
132
(
2007
).
9.
R. A.
Bagnold
, “
Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid under shear
,”
Proc. R. Soc. London, Ser. A
225
,
49
63
(
1954
).
10.
B. W.
Matthews
,
C. A. J.
Fletcher
, and
A. C.
Partridge
, “
Computational simulation of fluid and dilute particulate flows on spiral concentrators
,”
Appl. Math. Model.
22
,
965
979
(
1998
).
11.
J.
Zhou
,
B.
Dupuy
,
A. L.
Bertozzi
, and
A. E.
Hosoi
, “
Theory for shock dynamics in particle-laden thin films
,”
Phys. Rev. Lett.
94
(
11
),
117803
(
2005
).
12.
B. P.
Cook
, “
Theory for particle settling and shear-induced migration in thin-film liquid flow
,”
Phys. Rev. E
78
,
045303
(
2008
).
13.
T.
Ward
,
C.
Wey
,
R.
Glidden
,
A. E.
Hosoi
, and
A. L.
Bertozzi
, “
Theory for shock dynamics in particle-laden thin films
,”
Phys. Fluids
21
,
083305
(
2009
).
14.
N.
Murisic
,
J.
Ho
,
V.
Hu
,
P.
Latterman
,
T.
Koch
,
K.
Lin
,
M.
Mata
, and
A. L.
Bertozzi
, “
Particle-laden viscous thin-film flows on an incline: Experiments compared with an equilibrium theory based on shear-induced migration and particle settling
,”
Physica D
240
(
20
),
1661
1673
(
2011
).
15.
N.
Murisic
,
B.
Pausader
,
D.
Peschka
, and
A. L.
Bertozzi
, “
Dynamics of particle settling and resuspension in viscous liquid films
,”
J. Fluid Mech.
717
,
203
231
(
2013
).
16.
D.
Leighton
and
A.
Acrivos
, “
The shear-induced migration of particles in concentrated suspensions
,”
J. Fluid Mech.
181
,
415
439
(
1987
).
17.
R. J.
Phillips
,
R. C.
Armstrong
,
R. A.
Brown
,
A. L.
Graham
, and
J. R.
Abbott
, “
A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration
,”
Phys. Fluids
4
(
1
),
30
40
(
1992
).
18.
P. R.
Nott
and
J. F.
Brady
, “
Pressure-driven flow of suspensions: Simulation and theory
,”
J. Fluid Mech.
275
,
157
199
(
1994
).
19.
S.
Lee
,
Y. M.
Stokes
, and
A. L.
Bertozzi
, “
A model for particle laden flow in a spiral concentrator
,” Technical Report No. 14-08,
Department of Mathematics UCLA, LA, USA
,
2014
.
20.
M.
Germano
, “
The dean equations extended to a helical pipe flow
,”
J. Fluid Mech.
203
,
289
305
(
1989
).
21.
D.
Manoussaki
and
R. S.
Chadwick
, “
Effects of geometry on fluid loading in a coiled cochlea
,”
SIAM J. Appl. Math.
61
(
2
),
369
386
(
2000
).
22.
B. P.
Cook
,
A. L.
Bertozzi
, and
A. E.
Hosoi
, “
Shock solutions for particle-laden thin films
,”
SIAM J. Appl. Math.
68
(
3
),
760
783
(
2008
).
23.
U.
Schaflinger
,
A.
Acrivos
, and
K.
Zhang
, “
Viscous resuspension of a sediment within a laminar and stratified flow
,”
Int. J. Multiphase Flow
16
(
4
),
567
578
(
1990
).
24.
S.
Lee
,
A.
Mavromoustaki
,
G.
Urdaneta
,
K.
Huang
, and
A. L.
Bertozzi
, “
Experimental investigation of bidensity slurries on an incline
,”
Granul. Matter
16
(
2
),
269
274
(
2014
).
25.
A.
Mavromoustaki
and
A. L.
Bertozzi
, “
Hyperbolic systems of conservation laws in gravity-driven, particle-laden thin-film flows
,”
J. Eng. Math.
(published online).
26.
L.
Wang
and
A. L.
Bertozzi
, “
Shock solutions for high concentration particle-laden thin films
,”
SIAM J. Appl. Math.
74
(
2
),
322
344
(
2014
).
27.
J. G.
Simmonds
,
A Brief on Tensor Analysis
, 2nd ed. (
Springer
,
New York
,
1994
).
You do not currently have access to this content.