Catalytic bimetallic Janus particles swim by a bipolar electrochemical propulsion mechanism that results from electroosmotic fluid slip around the particle surface. The flow is driven by electrical body forces which are generated from a coupling of a reaction-induced electric field and net charge in the diffuse layer surrounding the particle. This paper presents simulations, scaling, and physical descriptions of the experimentally observed trend that the swimming speed decays rapidly with increasing solution conductivity. The simulations solve the full Poisson-Nernst-Planck-Stokes equations with multiple ionic species, a cylindrical particle in an infinite fluid, and nonlinear Butler-Volmer boundary conditions to represent the electrochemical surface reactions. The speed of bimetallic particles is reduced in high-conductivity solutions because of reductions in the induced electric field in the diffuse layer near the rod, the total reaction rate, and the magnitude of the rod zeta potential. This work suggests that the auto-electrophoretic mechanism is inherently susceptible to speed reductions in higher ionic strength solutions.

1.
W. F.
Paxton
,
K. C.
Kistler
,
C. C.
Olmeda
,
A.
Sen
,
S. K. S.
Angelo
,
Y. Y.
Cao
,
T. E.
Mallouk
,
P. E.
Lammert
, and
V. H.
Crespi
, “
Catalytic nanomotors: Autonomous movement of striped nanorods
,”
J. Am. Chem. Soc.
126
,
13424
13431
(
2004
).
2.
J.
Wang
, “
Can man-made nanomachines compete with nature biomotors
?”
ACS Nano
3
,
4
9
(
2009
).
3.
S. J.
Ebbens
and
J. R.
Howse
, “
In pursuit of propulsion at the nanoscale
,”
Soft Matter
6
,
726
(
2010
).
4.
D.
Takagi
,
A. B.
Braunschweig
,
J.
Zhang
, and
M. J.
Shelley
, “
Dispersion of self-propelled rods undergoing fluctuation-driven flips
,”
Phys. Rev. Lett.
110
,
038301
(
2013
).
5.
R.
Laocharoensuk
,
J.
Burdick
, and
J.
Wang
, “
Carbon-nanotube-induced acceleration of catalytic nanomotors
,”
ACS Nano
2
,
1069
1075
(
2008
).
6.
J.
Burdick
,
R.
Laocharoensuk
,
P. M.
Wheat
,
J. D.
Posner
, and
J.
Wang
, “
Synthetic nanomotors in microchannel networks: Directional microchip motion and controlled manipulation of cargo
,”
J. Am. Chem. Soc.
130
,
8164
8165
(
2008
).
7.
S.
Sundararajan
,
P. E.
Lammert
,
A. W.
Zudans
,
V. H.
Crespi
, and
A.
Sen
, “
Catalytic motors for transport of colloidal cargo
,”
Nano Lett.
8
,
1271
1276
(
2008
).
8.
P.
Calvo-Marzal
,
K. M.
Manesh
,
D.
Kagan
,
S.
Balasubramanian
,
M.
Cardona
,
G.
Flechsig
,
J.
Posner
, and
J.
Wang
, “
Electrochemically-triggered motion of catalytic nanomotors
,”
Chem. Commun.
2009
,
4509
4511
.
9.
S.
Balasubramanian
,
D.
Kagan
,
K. M.
Manesh
,
P.
Calvo-Marzal
,
G.
Flechsig
, and
J.
Wang
, “
Thermal modulation of nanomotor movement
,”
Small
5
,
1569
1574
(
2009
).
10.
D.
Kagan
,
P.
Calvo-Marzal
,
S.
Balasubramanian
,
S.
Sattayasamitsathit
,
K. M.
Manesh
,
G.
Flechsig
, and
J.
Wang
, “
Chemical sensing based on catalytic nanomotors: Motion-based detection of trace silver
,”
J. Am. Chem. Soc.
131
,
12082
12083
(
2009
).
11.
Y.
Wang
,
R. M.
Hernandez
,
J.
Bartlett
,
J. M.
Bingham
,
T. R.
Kline
,
A.
Sen
, and
T. E.
Mallouk
, “
Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions
,”
Langmuir
22
,
10451
10456
(
2006
).
12.
P. M.
Wheat
,
N. A.
Marine
,
J. L.
Moran
, and
J. D.
Posner
, “
Rapid fabrication of bimetallic spherical motors
,”
Langmuir
26
,
13052
13055
(
2010
).
13.
P.
Dhar
,
T. M.
Fischer
,
Y.
Wang
,
T. E.
Mallouk
,
W. F.
Paxton
, and
A.
Sen
, “
Autonomously moving nanorods at a viscous interface
,”
Nano Lett.
6
,
66
72
(
2006
).
14.
N.
Kovtyukhova
, “
Toward understanding of the propulsion mechanism of rod-shaped nanoparticles that catalyze gas-generating reactions
,”
J. Phys. Chem. C
112
,
6049
6056
(
2008
).
15.
W. F.
Paxton
,
A.
Sen
, and
T. E.
Mallouk
, “
Motility of catalytic nanoparticles through self-generated forces
,”
Chem. - Eur. J.
11
,
6462
6470
(
2005
).
16.
P.
Mitchell
, “
Hypothetical thermokinetic and electrokinetic mechanisms of locomotion in micro-organisms
,”
Proc. R. Phys. Soc. Edinburgh
25
,
32
34
(
1956
).
17.
P.
Mitchell
, “
Self-electrophoretic locomotion in microorganisms - bacterial flagella as giant ionophores
,”
FEBS Lett.
28
,
1
4
(
1972
).
18.
P. E.
Lammert
,
J.
Prost
, and
R.
Bruinsma
, “
Ion drive for vesicles and cells
,”
J. Theor. Biol.
178
,
387
391
(
1996
).
19.
W. F.
Paxton
,
P. T.
Baker
,
T. R.
Kline
,
Y.
Wang
,
T. E.
Mallouk
, and
A.
Sen
, “
Catalytically induced electrokinetics for motors and micropumps
,”
J. Am. Chem. Soc.
128
,
14881
14888
(
2006
).
20.
J. L.
Moran
,
P. M.
Wheat
, and
J. D.
Posner
, “
Locomotion of electrocatalytic nanomotors due to reaction induced charge autoelectrophoresis
,”
Phys. Rev. E
81
,
065302
(R) (
2010
).
21.
J. L.
Moran
and
J. D.
Posner
, “
Electrokinetic locomotion due to reaction-induced charge auto-electrophoresis
,”
J. Fluid Mech.
680
,
31
66
(
2011
).
22.
B.
Sabass
and
U.
Seifert
, “
Nonlinear, electrocatalytic swimming in the presence of salt
,”
J. Chem. Phys.
136
,
214507
(
2012
).
23.
R.
Golestanian
,
T. B.
Liverpool
, and
A.
Ajdari
, “
Designing phoretic micro- and nano-swimmers
,”
New J. Phys.
9
,
126
(
2007
).
24.
G. M.
Dougherty
,
K. A.
Rose
,
J. B. H.
Tok
,
S. S.
Pannu
,
F. Y. S.
Chuang
,
M. Y.
Sha
,
G.
Chakarova
, and
S. G.
Penn
, “
The zeta potential of surface-functionalized metallic nanorod particles in aqueous solution
,”
Electrophoresis
29
,
1131
1139
(
2008
).
25.
W.
Stumm
and
J.
Morgan
,
Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters
,
Environmental Science and Technology: A Wiley-Interscience Series of Texts and Monographs
(
Wiley
,
Hoboken, NJ
,
1981
).
26.
See supplementary material at http://dx.doi.org/10.1063/1.4869328 for data and discussion on the dependence of the speed on the length of the rod, the role of surface conduction, the variation in proton concentration with position along the rod, carbonic acid equilibrium calculations, power-law dependence of electric field and reaction rate on the electrolyte strength, the finite-element mesh, and a mesh refinement study.
27.
T. R.
Kline
,
J.
Iwata
,
P. E.
Lammert
,
T. E.
Mallouk
,
A.
Sen
, and
D.
Velegol
, “
Catalytically driven colloidal patterning and transport
,”
J. Phys. Chem. B
110
,
24513
24521
(
2006
).
28.
E.
Yariv
, “
Electrokinetic self-propulsion by inhomogeneous surface kinetics
,”
Proc. R. Soc. A
467
,
1645
1664
(
2011
).
29.
J. F.
Hoburg
and
J. R.
Melcher
, “
Internal electrohydrodynamic instability and mixing of fluids with orthogonal field and conductivity gradients
,”
J. Fluid Mech.
73
,
333
351
(
1976
).
30.
J. L.
Moran
, “
Electrokinetic locomotion
,” Ph.D. thesis (
University of Washington
,
2013
).
31.
M. Z.
Bazant
,
K. T.
Chu
, and
B. J.
Bayly
, “
Current-voltage relations for electrochemical thin films
,”
SIAM J. Appl. Math.
65
,
1463
1484
(
2005
).
32.
A.
Frumkin
, “
Hydrogen overvoltage and the structure of the double layer
,”
Z. Phys. Chem.
164A
,
121
133
(
1933
).
33.
P.
Delahay
,
Double Layer and Electrode Kinetics
(
Interscience
,
New York
,
1965
).
34.
A. J.
Bard
and
L. R.
Faulkner
,
Electrochemical Methods: Fundamentals and Applications
, 2nd ed. (
Wiley
,
New York
,
2000
).
35.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data
(
CRC Press
,
Boca Raton, FL
,
2004
).
36.
Y. A.
Çengel
and
J. M.
Cimbala
,
Fluid Mechanics: Fundamentals and Applications
(
McGraw-Hill Higher Education
,
Boston
,
2010
).
37.
J.
Bikerman
, “
Structure and capacity of the electrical double layer
,”
Philos. Mag.
33
,
384
397
(
1942
).
38.
S.
Dukhin
and
B.
Derjaguin
,
Electrokinetic Phenomena
,
Surface and Colloid Science
(
John Wiley & Sons
,
Hoboken, NJ
,
1974
), Vol.
7
.
39.
J.
Lyklema
,
Fundamentals of Interface and Colloid Science. Volume II: Solid-Liquid Interfaces
(
Academic Press
,
San Diego
,
1995
).
40.
R.
O'Brien
and
L.
White
, “
Electrophoretic mobility of a spherical colloidal particle
,”
J. Chem. Soc., Faraday Trans. 2
74
,
1607
1626
(
1978
).
41.
A. S.
Khair
and
T. M.
Squires
, “
The influence of hydrodynamic slip on the electrophoretic mobility of a spherical colloidal particle
,”
Phys. Fluids
21
,
042001
1
042001
14
(
2009
).
42.
J.
Newman
and
K.
Thomas-Alyea
,
Electrochemical Systems
,
The Electrochemical Society Series
(
Wiley
,
Hoboken, NJ
,
2004
).
43.
W.
Gao
,
S.
Sattayasamitsathit
,
J.
Orozco
, and
J.
Wang
, “
Highly efficient catalytic microengines: Template electrosynthesis of polyaniline/platinum microtubes
,”
J. Am. Chem. Soc.
133
,
11862
11864
(
2011
).
44.
K. M.
Manesh
,
M.
Cardona
,
R.
Yuan
,
M.
Clark
,
D.
Kagan
,
S.
Balasubramanian
, and
J.
Wang
, “
Template-assisted fabrication of salt-independent catalytic tubular microengines
,”
ACS Nano
4
,
1799
1804
(
2010
).
45.
W.
Gao
,
A.
Pei
, and
J.
Wang
, “
Water-driven micromotors
,”
ACS nano
6
(
9
),
8432
8438
(
2012
).
46.
W.
Gao
,
A.
Uygun
, and
J.
Wang
, “
Hydrogen-bubble-propelled zinc-based microrockets in strongly acidic media
,”
J. Am. Chem. Soc.
134
,
897
900
(
2012
).

Supplementary Material

You do not currently have access to this content.