Rotating helical bodies of arbitrary cross-sectional profile and infinite length are explored as they swim through or transport a viscous fluid. The Stokes equations are studied in a helical coordinate system, and closed form analytical expressions for the force-free swimming speed and torque are derived in the asymptotic regime of nearly cylindrical bodies. High-order accurate expressions for the velocity field and swimming speed are derived for helical bodies of finite pitch angle through a double series expansion. The analytical predictions match well with the results of full numerical simulations, and accurately predict the optimal pitch angle for a given cross-sectional profile. This work may improve the modeling and design of helical structures used in microfluidic manipulation, synthetic microswimmer engineering, and the transport and mixing of viscous fluids.

1.
T.
Koetsier
and
H.
Blauwendraat
, “
The Archimedean screw-pump: A note on its invention and the development of the theory
,” in
Proceedings of the International Symposium on History of Machines and Mechanisms, 2004
(
Springer
,
Netherlands
,
2004
), pp.
181
194
.
2.
P. A.
Tanguy
,
R.
Lacroix
,
F.
Bertrand
,
L.
Choplin
, and
E. B. De La
Fuente
, “
Finite element analysis of viscous mixing with a helical ribbon-screw impeller
,”
AIChE J.
38
,
939
944
(
1992
).
3.
J. De La
Villeon
,
F.
Bertrand
,
P. A.
Tanguy
,
R.
Labrie
,
J.
Bousquet
, and
D.
Lebouvier
, “
Numerical investigation of mixing efficiency of helical ribbons
,”
AIChE J.
44
,
972
977
(
1998
).
4.
G.
Delaplace
,
J. C.
Leuliet
, and
V.
Relandeau
, “
Circulation and mixing times for helical ribbon impellers: Review and experiments
,”
Exp. Fluids
28
(
2
),
170
182
(
2000
).
5.
M.
Robinson
and
P. W.
Cleary
, “
Flow and mixing performance in helical ribbon mixers
,”
Chem. Eng. Sci.
84
,
382
398
(
2012
).
6.
P. J.
Carreau
,
I.
Patterson
, and
C. Y.
Yap
, “
Mixing of viscoelastic fluids with helical-ribbon agitators. I. Mixing time and flow patterns
,”
Can. J. Chem. Eng.
54
,
135
142
(
1976
).
7.
F.
Jiang
,
K. S.
Drese
,
S.
Hardt
,
M.
Küpper
, and
F.
Schönfeld
, “
Helical flows and chaotic mixing in curved micro channels
,”
AIChE J.
50
,
2297
2305
(
2004
).
8.
T.
Honda
,
K. I.
Arai
, and
K.
Ishiyama
, “
Micro swimming mechanisms propelled by external magnetic fields
,”
IEEE Trans. Magn.
32
,
5085
5087
(
1996
).
9.
A.
Ghosh
and
P.
Fischer
, “
Controlled propulsion of artificial magnetic nanostructured propellers
,”
Nano Lett.
9
,
2243
2245
(
2009
).
10.
L.
Zhang
,
J. J.
Abbott
,
L.
Dong
,
K. E.
Peyer
,
B. E.
Kratochvil
,
H.
Zhang
,
C.
Bergeles
, and
B. J.
Nelson
, “
Characterizing the swimming properties of artificial bacterial flagella
,”
Nano Lett.
9
,
3663
3667
(
2009
).
11.
S.
Tottori
,
L.
Zhang
,
F.
Qiu
,
K. K.
Krawczyk
,
A.
Franco-Obregón
, and
B. J.
Nelson
, “
Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport
,”
Adv. Mater.
24
,
811
816
(
2012
).
12.
S.
Tottori
,
L.
Zhang
,
K. E.
Peyer
, and
B. J.
Nelson
, “
Assembly, disassembly, and anomalous propulsion of microscopic helices
,”
Nano Lett.
13
,
4263
4268
(
2013
).
13.
K. E.
Peyer
,
S.
Tottori
,
F.
Qiu
,
L.
Zhang
, and
B. J.
Nelson
, “
Magnetic helical micromachines
,”
Chem. Eur. J.
19
,
28
38
(
2013
).
14.
B. J.
Nelson
,
I. K.
Kaliakatsos
, and
J. J.
Abbott
, “
Microrobots for minimally invasive medicine
,”
Annu. Rev. Biomed. Eng.
12
,
55
85
(
2010
).
15.
W.
Gao
,
D.
Kagan
,
O. S.
Pak
,
C.
Clawson
,
S.
Campuzano
,
E.
Chuluun-Erdene
,
E.
Shipton
,
E. E.
Fullerton
,
L.
Zhang
,
E.
Lauga
 et al, “
Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery
,”
Small
8
,
460
467
(
2012
).
16.
J.
Wang
and
W.
Gao
, “
Nano/microscale motors: Biomedical opportunities and challenges
,”
ACS Nano
6
,
5745
5751
(
2012
).
17.
J.
Lighthill
, “
Flagellar hydrodynamics - von Neumann lecture, 1975
,”
SIAM Rev.
18
(
2
),
161
230
(
1976
).
18.
E.
Lauga
and
T. R.
Powers
, “
The hydrodynamics of swimming microorganisms
,”
Rep. Prog. Phys.
72
,
096601
(
2009
).
19.
Z.
Carvalho-Santos
,
J.
Azimzadeh
,
J. B.
Pereira-Leal
, and
M.
Bettencourt-Dias
, “
Tracing the origins of centrioles, cilia, and flagella
,”
J. Cell Biol.
194
,
165
175
(
2011
).
20.
E. M.
Purcell
, “
Life at low Reynolds-number
,”
Am. J. Phys.
45
(
1
),
3
11
(
1977
).
21.
J.
Gray
and
G. J.
Hancock
, “
The propulsion of sea-urchin spermatozoa
,”
J. Exp. Biol.
32
(
4
),
802
814
(
1955
).
22.
S.
Childress
,
Mechanics of Swimming and Flying
(
Cambridge University Press
,
Cambridge, UK
,
1981
), Vol.
2
.
23.
B.
Rodenborn
,
C.-H.
Chen
,
H. L.
Swinney
,
B.
Liu
, and
H. P.
Zhang
, “
Propulsion of microorganisms by a helical flagellum
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
E338
E347
(
2013
).
24.
M.
Kim
,
J. C.
Bird
,
A. J.
Van Parys
,
K. S.
Breuer
, and
T. R.
Powers
, “
A macroscopic scale model of bacterial flagellar bundling
,”
Proc. Natl. Acad. Sci. U.S.A.
100
,
15481
15485
(
2003
).
25.
M.
Kim
and
T. R.
Powers
, “
Hydrodynamic interactions between rotating helices
,”
Phys. Rev. E
69
,
061910
(
2004
).
26.
M.
Kim
,
M.
Kim
,
J. C.
Bird
,
J.
Park
,
T. R.
Powers
, and
K. S.
Breuer
, “
Particle image velocimetry experiments on a macro-scale model for bacterial flagellar bundling
,”
Exp. Fluids
37
,
782
788
(
2004
).
27.
M.
Reichert
and
H.
Stark
, “
Synchronization of rotating helices by hydrodynamic interactions
,”
Eur. Phys. J. E
17
,
493
500
(
2005
).
28.
H.
Flores
,
E.
Lobaton
,
S.
Méndez-Diez
,
S.
Tlupova
, and
R.
Cortez
, “
A study of bacterial flagellar bundling
,”
Bull. Math. Biol.
67
,
137
168
(
2005
).
29.
P. J. A.
Janssen
and
M. D.
Graham
, “
Coexistence of tight and loose bundled states in a model of bacterial flagellar dynamics
,”
Phys. Rev. E
84
,
011910
(
2011
).
30.
S.
Lim
and
C. S.
Peskin
, “
Fluid-mechanical interaction of flexible bacterial flagella by the immersed boundary method
,”
Phys. Rev. E
85
,
036307
(
2012
).
31.
S. Y.
Reigh
,
R. G.
Winkler
, and
G.
Gompper
, “
Synchronization and bundling of anchored bacterial flagella
,”
Soft Matter
8
,
4363
4372
(
2012
).
32.
S. Y.
Reigh
,
R. G.
Winkler
, and
G.
Gompper
, “
Synchronization, slippage, and unbundling of driven helical flagella
,”
PloS ONE
8
,
e70868
(
2013
).
33.
H. C.
Fu
,
T. R.
Powers
, and
H. C.
Wolgemuth
, “
Theory of swimming filaments in viscoelastic media
,”
Phys. Rev. Lett.
99
,
258101
258105
(
2007
).
34.
A. M.
Leshansky
, “
Enhanced low-Reynolds-number propulsion in heterogeneous viscous environments
,”
Phys. Rev. E
80
,
051911
(
2009
).
35.
H. C.
Fu
,
C. W.
Wolgemuth
, and
T. R.
Powers
, “
Swimming speeds of filaments in nonlinearly viscoelastic fluids
,”
Phys. Fluids
21
,
033102
(
2009
).
36.
B.
Liu
,
T. R.
Powers
, and
K. S.
Breuer
, “
Force-free swimming of a model helical flagellum in viscoelastic fluids
,”
Proc. Natl. Acad. Sci. U.S.A.
108
,
19516
19520
(
2011
).
37.
S. E.
Spagnolie
,
B.
Liu
, and
T.
Powers
, “
Locomotion of helical bodies in viscoelastic fluids: enhanced swimming at large helical amplitudes
,”
Phys. Rev. Lett.
111
,
068101
(
2013
).
38.
J. J. L.
Higdon
, “
The hydrodynamics of flagellar propulsion: Helical waves
,”
J. Fluid Mech.
94
,
331
351
(
1979
).
39.
E. M.
Purcell
, “
The efficiency of propulsion by a rotating flagellum
,”
Proc. Natl. Acad. Sci. U.S.A.
94
,
11307
11311
(
1997
).
40.
N.
Watari
and
R. G.
Larson
, “
The hydrodynamics of a run-and-tumble bacterium propelled by polymorphic helical flagella
,”
Biophys. J.
98
,
12
17
(
2010
).
41.
S. E.
Spagnolie
and
E.
Lauga
, “
Comparative hydrodynamics of bacterial polymorphism
,”
Phys. Rev. Lett.
106
,
058103
(
2011
).
42.
B.
Liu
,
K. S.
Breuer
, and
T. R.
Powers
, “
Propulsion by a helical flagellum in a capillary tube
,”
Phys. Fluids
26
,
011701
(
2014
).
43.
S.
Childress
, “
A thermodynamic efficiency for Stokesian swimming
,”
J. Fluid Mech.
705
,
77
97
(
2012
).
44.
E. E.
Keaveny
and
M. J.
Shelley
, “
Hydrodynamic mobility of chiral colloidal aggregates
,”
Phys. Rev. E
79
,
051405
(
2009
).
45.
E. E.
Keaveny
,
S.
Walker
, and
M. J.
Shelley
, “
Optimization of chiral structures for microscale propulsion
,”
Nano Lett.
13
,
531
537
(
2013
).
46.
K. I.
Morozov
and
A. M.
Leshansky
, “
The chiral magnetic nanomotors
,”
Nanoscale
6
,
1580
1588
(
2014
).
47.
H.
Power
and
G.
Miranda
, “
Second kind integral equation formulation of Stokes flows past a particle of arbitrary shape
,”
SIAM J. Appl. Math.
47
,
689
698
(
1987
).
48.
C.
Pozrikidis
,
Boundary Integral and Singularity Methods for Linearized Viscous Flow
(
Cambridge University Press
,
Cambridge, UK
,
1992
).
49.
K.
Atkinson
and
W.
Han
,
Theoretical Numerical Analysis
(
Springer
,
New York, NY
,
2009
).
50.
K. E.
Atkinson
,
An Introduction to Numerical Analysis
(
John Wiley & Sons
,
New York
,
1978
).
51.
E. E.
Keaveny
and
M. J.
Shelley
, “
Applying a second-kind boundary integral equation for surface tractions in Stokes flow
,”
J. Comput. Phys.
230
,
2141
2159
(
2011
).
52.
A. A.
Evans
,
S. E.
Spagnolie
, and
E.
Lauga
, “
Stokesian jellyfish: Viscous locomotion of bilayer vesicles
,”
Soft Matter
6
,
1737
1747
(
2010
).
53.
B.
Liu
,
K. S.
Breuer
, and
T. R.
Powers
, “
Helical swimming in Stokes flow using a novel boundary-element method
,”
Phys. Fluids
25
,
061902
(
2013
).
54.
O. S.
Pak
,
S. E.
Spagnolie
, and
E.
Lauga
, “
Hydrodynamics of the double-wave structure of insect spermatozoa flagella
,”
J. R. Soc. Interface
9
,
1908
1924
(
2012
).
55.
S.
Jung
,
K.
Mareck
,
L.
Fauci
, and
M. J.
Shelley
, “
Rotational dynamics of a superhelix towed in a Stokes fluid
,”
Phys. Fluids
19
,
103105
(
2007
).
56.
M.
Sauzade
,
G. J.
Elfring
, and
E.
Lauga
, “
Taylor's swimming sheet: Analysis and improvement of the perturbation series
,”
Physica D
240
,
1567
1573
(
2011
).
57.
C. M.
Bender
and
S. A.
Orszag
,
Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory
(
Springer
,
1999
), Vol.
1
.
58.
S.
Childress
, “
Inertial swimmer as a singular perturbation
,” in
Proceedings of the ASME 2008 Dynamic Systems and Control Conference
(
Ann Arbour
,
MI, USA
,
2008
).
59.
A. D.
Stroock
,
S. K. W.
Dertinger
,
A.
Ajdari
,
I.
Mezić
,
H. A.
Stone
, and
G. M.
Whitesides
, “
Chaotic mixer for microchannels
,”
Science
295
,
647
651
(
2002
).
60.
A. D.
Stroock
,
S. K.
Dertinger
,
G. M.
Whitesides
, and
A.
Ajdari
, “
Patterning flows using grooved surfaces
,”
Anal. Chem.
74
,
5306
5312
(
2002
).
61.
S.
Zhou
,
A.
Sokolov
,
O. D.
Lavrentovich
, and
I. S.
Aranson
, “
Living liquid crystals
,”
Proc. Natl. Acad. Sci. U.S.A.
111
,
1265
1270
(
2014
).
62.
S. L.
Tamm
, “
Ciliary motion in paramecium a scanning electron microscope study
,”
J. Cell Biol.
55
,
250
255
(
1972
).
63.
K.
Drescher
,
K. C.
Leptos
,
I.
Tuval
,
T.
Ishikawa
,
T. J.
Pedley
, and
R. E.
Goldstein
, “
Dancing volvox: Hydrodynamic bound states of swimming algae
,”
Phys. Rev. Lett.
102
,
168101
(
2009
).
64.
J. B.
Waterbury
,
J. M.
Willey
,
D. G.
Franks
,
F. W.
Valois
, and
S. W.
Watson
, “
A cyanobacterium capable of swimming motility
,”
Science
230
,
74
76
(
1985
).
65.
K. M.
Ehlers
,
A. D.
Samuel
,
H. C.
Berg
, and
R.
Montgomery
, “
Do cyanobacteria swim using traveling surface waves?
,”
Proc. Natl. Acad. Sci. U.S.A.
93
(
16
),
8340
8343
(
1996
).
66.
H. A.
Stone
and
A. D. T.
Samuel
, “
Propulsion of microorganisms by surface distortions
,”
Phys. Rev. Lett.
77
(
19
),
4102
4104
(
1996
).
67.
B.
Brahamsha
, “
Non-flagellar swimming in marine Synechococcus
,”
J. Mol. Microbiol. Biotechnol.
1
,
59
62
(
1999
).
68.
K.
Ehlers
and
G.
Oster
, “
On the mysterious propulsion of Synechococcus
,”
PloS ONE
7
,
e36081
(
2012
).
You do not currently have access to this content.