The stability of a thread of fluid deposited on a flat solid substrate is studied numerically by means of the Finite Element Method in combination with an Arbitrary Lagrangian-Eulerian technique. A good agreement is observed when our results are compared with predictions of linear stability analysis obtained by other authors. Moreover, we also analysed the influence of inertia for different contact angles and found that inertia strongly affects the growth rate of the instability when contact angles are large. By contrast, the wave number of the fastest growing mode does not show important variations with inertia. The numerical technique allows us to follow the evolution of the free surface instability until comparatively late stages, where the filament begins to break into droplets. The rupture pattern observed for several cases shows that the number of principal droplets agrees reasonably well with an estimation based on the fastest growing modes.

1.
A.
Piqué
and
D. B.
Chrisey
,
Direct-Write Technologies for Rapid Prototyping Applications: Sensors, Electronics, and Integrated Power Sources
(
Academic Press
,
San Diego
,
2002
).
2.
P.
Calvert
, “
Inkjet printing for materials and devices
,”
Chem. Mater.
13
,
3299
3305
(
2001
).
3.
J. A.
Lewis
and
G. M.
Gratson
, “
Direct writing in three dimensions
,”
Mater. Today
7
,
32
39
(
2004
).
4.
J. A.
Lewis
, “
Direct ink writing of 3d functional materials
,”
Adv. Funct. Mater.
16
,
2193
2204
(
2006
).
5.
P. C.
Duineveld
,
M. M.
de Kok
,
M.
Buechel
,
A.
Sempel
,
K. A. H.
Mutsaers
,
P.
van de Weijer
,
I. G. J.
Camps
,
T.
van de Biggelaar
,
J.-E. J. M.
Rubingh
, and
E. I.
Haskal
, “
Ink-jet printing of polymer light-emitting devices
,”
Proc. SPIE
4464
,
59
67
(
2002
).
6.
L.
Kondic
,
J.
Diez
,
P.
Rack
,
Y.
Guan
, and
J.
Fowlkes
, “
Nanoparticle assembly via the dewetting of patterned thin metal lines: Understanding the instability mechanisms
,”
Phys. Rev. E
79
,
026302
(
2009
).
7.
A.
Darhuber
and
S.
Troian
, “
Principles of microfluidic actuation by modulation of surface stresses
,”
Annu. Rev. Fluid Mech.
37
,
425
455
(
2005
).
8.
S.
Davis
, “
Moving contact lines and rivulet instabilities. Part 1. The static rivulet
,”
J. Fluid Mech.
98
,
225
242
(
1980
).
9.
G.
Young
and
S.
Davis
, “
Rivulet instabilities
,”
J. Fluid Mech.
176
,
1
31
(
1987
).
10.
S.
Mechkov
,
M.
Rauscher
, and
S.
Dietrich
, “
Stability of liquid ridges on chemical micro-and nanostripes
,”
Phys. Rev. E
77
,
061605
(
2008
).
11.
K.
Sekimoto
,
R.
Oguma
, and
K.
Kawasaki
, “
Morphological stability analysis of partial wetting
,”
Ann. Phys.
176
,
359
392
(
1987
).
12.
J.
Diez
,
A.
González
, and
L.
Kondic
, “
On the breakup of fluid rivulets
,”
Phys. Fluids
21
,
082105
(
2009
).
13.
D.
Langbein
, “
The shape and stability of liquid menisci at solid edges
,”
J. Fluid Mech.
213
,
251
265
(
1990
).
14.
R.
Roy
and
L.
Schwartz
, “
On the stability of liquid ridges
,”
J. Fluid Mech.
391
,
293
318
(
1999
).
15.
L.
Yang
and
G.
Homsy
, “
Capillary instabilities of liquid films inside a wedge
,”
Phys. Fluids
19
,
044101
(
2007
).
16.
S.
Schiaffino
and
A.
Sonin
, “
Formation and stability of liquid and molten beads on a solid surface
,”
J. Fluid Mech.
343
,
95
110
(
1997
).
17.
P.
Duineveld
, “
The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate
,”
J. Fluid Mech.
477
,
175
200
(
2003
).
18.
A.
González
,
J.
Diez
,
R.
Gratton
, and
J.
Gomba
, “
Rupture of a fluid strip under partial wetting conditions
,”
Europhys. Lett.
77
,
44001
(
2007
).
19.
C.
Huh
and
L.
Scriven
, “
Hydrodynamic model of steady movement of a solid/liquid/fluid contact line
,”
J. Colloid Interface Sci.
35
,
85
101
(
1971
).
20.
J.
Donea
,
A.
Huerta
,
J.-P.
Ponthot
, and
A.
Rodríguez-Ferran
, “
Arbitrary Lagrangian-Eulerian methods
,” in
Encyclopedia of Computational Mechanics
, edited by
E.
Stein
,
R.
de Borst
, and
T.
Hughes
(
Wiley Online Library
,
2004
), pp.
243
299
.
21.
H.
Lamb
,
Hydrodynamics
(
Dover Publications
,
New York
,
1932
), arts. 327 and 331.
22.
C.
Hirt
and
B.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
225
(
1981
).
23.
D.
Gueyffier
,
J.
Li
,
A.
Nadim
,
R.
Scardovelli
, and
S.
Zaleski
, “
Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows
,”
J. Comput. Phys.
152
,
423
456
(
1999
).
24.
M.
Sussman
,
P.
Smereka
, and
S.
Osher
, “
A level set approach for computing solutions to incompressible two-phase flow
,”
J. Comput. Phys.
114
,
146
159
(
1994
).
25.
J.
Sethian
, “
Level set methods for fluid interfaces
,”
Annu. Rev. Fluid Mech.
35
,
341
372
(
2003
).
26.
G.
Caginalp
, “
An analysis of a phase field model of a free boundary
,”
Arch. Ration. Mech. Anal.
92
,
205
245
(
1986
).
27.
D.
Anderson
,
G.
McFadden
, and
A.
Wheeler
, “
Diffuse-interface methods in fluid mechanics
,”
Annu. Rev. Fluid Mech.
30
,
139
165
(
1998
).
28.
J.
Donea
,
P.
Fasoli-Stella
, and
S.
Giuliani
, “
Finite element solution of transient fluid-structure problems in Lagrangian coordinates
,” in
Proceedings of the International Meeting on Fast Reactor Safety and Related Physics, 5–8 October 1976, Chicago, IL
, Vol.
3
:
Accident analysis, structural dynamics
, edited by
R. G.
Sachs
,
American Nuclear Society
, and
European Nuclear Society
(
National Technical Information Service
,
Springfield, IL, USA
,
1977
), pp.
1427
1435
.
29.
J.
Fukai
,
Z.
Zhao
,
D.
Poulikakos
,
C.
Megaridis
, and
O.
Miyatake
, “
Modeling of the deformation of a liquid droplet impinging upon a flat surface
,”
Phys. Fluids A
5
,
2588
2599
(
1993
).
30.
T.
Hughes
,
W.
Liu
, and
T.
Zimmermann
, “
Lagrangian-Eulerian finite element formulation for incompressible viscous flows
,”
Comput. Methods Appl. Mech. Eng.
29
,
329
349
(
1981
).
31.
J.
Donea
,
S.
Giuliani
, and
J.
Halleux
, “
An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions
,”
Comput. Methods Appl. Mech. Eng.
33
,
689
723
(
1982
).
32.
K.
Christodoulou
and
L.
Scriven
, “
Discretization of free surface flows and other moving boundary problems
,”
J. Comput. Phys.
99
,
39
55
(
1992
).
33.
C.
Hirt
,
A.
Amsden
, and
J.
Cook
, “
An arbitrary Lagrangian-Eulerian computing method for all flow speeds
,”
J. Comput. Phys.
135
,
203
216
(
1997
).
34.
COMSOL AB
,
COMSOL Multiphysics Modeling Guide, Version 3.5
(
COMSOL
,
2008
).
35.
A.
Winslow
, “
Numerical solution of the quasilinear Poisson equation in a nonuniform triangle mesh
,”
J. Comput. Phys.
1
,
149
172
(
1966
).
36.
O.
Zienkiewicz
,
R.
Taylor
, and
J.
Zhu
,
The Finite Element Method
, 6th ed.,
Its Basis and Fundamentals
Vol.
1
(
Butterworth-Heinemann
,
Oxford
,
2005
).
37.
S.
Ubal
,
B.
Xu
,
P.
Grassia
, and
B.
Derby
, “
Continuous deposition of a liquid thread onto a moving substrate: numerical analysis and comparison with experiments
,”
J. Fluids Eng.
134
,
021301
1
021301
17
(
2012
).
38.
F.
Brochard-Wyart
and
C.
Redon
, “
Dynamics of liquid rim instabilities
,”
Langmuir
8
,
2324
2329
(
1992
).
39.
This should be contrasted with the smaller contact angle predictions discussed previously (11 large droplets and 3 smaller droplets) so larger contact angles seem to favour the production of small satellites. Note that satellite droplets have been observed experimentally, for example, in González et al.18 
You do not currently have access to this content.