The complex multiscale physics of nano-particle laden functional droplets in a reacting environment is of fundamental and applied significance for a wide variety of applications ranging from thermal sprays to pharmaceutics to modern day combustors using new brands of bio-fuels. Formation of homogenous nucleated bubbles at the superheat limit inside vaporizing droplets (with or without nanoparticles) represents an unstable system. Here we show that self-induced boiling in burning functional pendant droplets can produce severe volumetric shape oscillations. Internal pressure build-up due to ebullition activity ejects bubbles from the droplet domain causing undulations on the droplet surface and oscillations in bulk. Through experiments, we establish that the degree of droplet deformation depends on the frequency and intensity of these bubble expulsion events. In a distinct regime of single isolated bubble residing in the droplet, however, pre-ejection transient time is identified by Darrieus-Landau evaporative instability, where bubble-droplet system behaves as a synchronized driver-driven system with bulk bubble-shape oscillations being imposed on the droplet. The agglomeration of nanophase additives modulates the flow structures within the droplet and also influences the bubble inception and growth leading to different levels of instabilities.

1.
A.
Ozturk
and
B. M.
Cetegen
, “
Morphology of ceramic particulates formed in a premixed oxygen/acetylene flame from liquid precursor droplets
,”
Acta Mater.
53
(
8
),
2531
2544
(
2005
).
2.
S.
Basu
and
B. M.
Cetegen
, “
Modeling of liquid ceramic precursor droplets in a high velocity oxy-fuel flame jet
,”
Acta Mater.
56
,
2750
2759
(
2008
).
3.
K. V.
Wong
and
O.
De Leon
, “
Applications of nanofluids: Current and future
,”
Adv. Mech. Eng.
2010
,
519659
.
4.
M.
Eslamian
and
M.
Shekkariz
, “
Recent advances in nanoparticle preparation by spray and microemulsion methods
,”
Recent Patents Nanotechnol.
3
(
2
),
99
115
(
2009
).
5.
A.
Wright
, “
Fluid mechanics: Impact factors
,”
Nature (London)
419
,
576
(
2002
).
6.
S. L.
Manzello
and
J. C.
Yang
, “
On the collision dynamics of water droplet containing an additive on a heated solid surface
,”
Proc. R. Soc. London A
458
,
2417
2444
(
2002
).
7.
S.
Mandre
,
M.
Mani
, and
M. P.
Brenner
, “
Precursors to splashing of liquid droplets on a solid surface
,”
Phys. Rev. Lett.
102
,
134502
(
2009
).
8.
G.
Juarez
,
T.
Gastopoulos
,
Y.
Zhang
,
M. L.
Siegel
, and
P. E.
Arratia
, “
Splash control of drop impacts with geometric targets
,”
Phys. Rev. E
85
,
026319
(
2012
).
9.
M. M.
Driscoll
,
S. C.
Stevens
, and
S. R.
Nagel
, “
Thin film formation during splashing of viscous liquids
,”
Phys. Rev. E
82
,
036302
(
2010
).
10.
E.
Villermaux
and
B.
Bossa
, “
Droplet fragmentation on impact
,”
J. Fluid Mech.
668
,
412
435
(
2011
).
11.
G.
Lagubeau
,
M. A.
Fontelos
,
C.
Josserand
,
A.
Maurel
,
V.
Pagneux
, and
P.
Petitjeans
, “
Spreading dynamics of drop impacts
,”
J. Fluid Mech.
713
,
50
60
(
2012
).
12.
C.
Josserand
,
L.
Lemoyne
,
T.
Troeger
, and
S.
Zalseki
, “
Droplet impact on a dry surface: Triggering the splash with a small obstacle
,”
J. Fluid Mech.
524
,
47
56
(
2005
).
13.
A. L.
Yarin
and
D. A.
Weiss
, “
Impact of drops on solid surfaces: Self similarity capillary waves, and splashing as a new type of kinematic discontinuity
,”
J. Fluid Mech.
283
,
141
173
(
1995
).
14.
A. L. N.
Moreira
,
A. S.
Moita
, and
S.
Chandra
, “
Droplet impact on solid surface
,” in
Handbook of Atomization and Sprays-theory and Applications
, edited by
N.
Ashgriz
(
Springer
,
New York, USA
,
2011
).
15.
S.
Chandra
and
C. T.
Avedisian
, “
On the collision of a droplet with a solid surface
,”
Proc. R. Soc. London A
432
,
13
41
(
1991
).
16.
B. E.
Gelfand
, “
Droplet breakup phenomenon in flows with velocity lag
,”
Prog. Energy Combust. Sci.
22
(
3
),
201
265
(
1996
).
17.
L. P.
Hsiang
and
G. M.
Faeth
, “
Near-limit drop deformation and secondary break-up
,”
Int. J. Multiphase Flow
18
(
5
),
635
652
(
1992
).
18.
D. R.
Guildenbecher
,
C.
Lopez-Rivera
, and
P. E.
Sojka
, “
Droplet deformation and breakup
,” in
Handbook of Atomization and Sprays-theory and Applications
, edited by
N.
Ashgriz
(
Springer
,
New York, USA
,
2011
).
19.
C. H.
Wang
,
H. Q.
Liu
, and
C. K.
Law
, “
Combustion and microexplosion of freely falling multicomponent droplets
,”
Combust. Flame
56
,
175
197
(
1984
).
20.
C. H.
Wang
and
C. K.
Law
, “
Microexplosion of fuel droplets under high pressure
,”
Combust. Flame
59
,
53
62
(
1985
).
21.
J. C.
Lasheras
,
A. C.
Fernando-Pello
, and
F. L.
Dryer
, “
On the disruptive burning of free droplets of alcohol/n-paraffin solutions and emulsions
,”
Proc. Combust. Inst.
18
,
293
305
(
1981
).
22.
C. K.
Law
, “
Internal boiling and superheating in vaporizing multicomponent droplets
,”
AIChE J.
24
(
4
),
626
632
(
1978
).
23.
C. K.
Law
,
Combustion Physics
(
Cambridge University Press
,
New York, USA
,
2006
).
24.
C. T.
Avedisian
and
I.
Glassman
, “
High pressure homogeneous nucleation of bubbles within superheated binary liquid mixtures
,”
J. Heat Transfer
103
(
2
),
272
280
(
1981
).
25.
C. T.
Avedisian
and
I.
Glassman
, “
Superheating and boiling of water in hydrocarbons at high pressures
,”
Int. J. Heat Mass Transfer
24
(
4
),
695
706
(
1981
).
26.
C. T.
Avedisian
and
R. P.
Andres
, “
Bubble nucleation in liquid-liquid emulsions
,”
J. Colloid Interface Sci.
64
(
3
),
438
(
1978
).
27.
C. T.
Avedisian
, “
The homogeneous nucleation limits of liquids
,”
J. Phys. Chem. Ref. Data
14
(
3
),
695
720
(
1985
).
28.
A.
Saha
,
S.
Basu
,
C.
Suryanarayana
, and
R.
Kumar
, “
Experimental analysis of thermo-physical processes in acoustically levitated heated droplets
,”
Int. J. Heat and Mass Transfer
53
,
5663
5674
(
2010
).
29.
R.
Kumar
,
E.
Tijerino
,
A.
Saha
, and
S.
Basu
, “
Structural morphology of acoustically levitated and heated nanosilica droplet
,”
Appl. Phys. Lett.
97
,
123106
(
2010
).
30.
N.
Otsu
, “
Threshold selection method from gray-level histograms
,”
IEEE Trans Syst. Man Cybern
9
(
1
),
62
66
(
1979
).
31.
See supplementary material at http://dx.doi.org/10.1063/1.4866866 for Video 1: Secondary atomization of the parent droplet producing sputtering effect at the gas-liquid interface due the formation of pinched-off daughter droplets. Video 2: small scale corrugation of the droplet surface in regime II. Video 3: Large amplitude, low-wave number corrugation of the droplet surface in regimes III and IV. Video 4: Formation of a gelatinous viscous crust due to particle agglomeration resulting in bubble entrapment, reduced bubble ejection frequency and damped droplet-shape oscillations. Video 5: Damping of the internal liquid motion till final stagnation in regime IV for a nanofuel droplet as fluid becomes more viscous (due to increased dominance of particle aggregation).
32.
D. M.
Newitt
,
N.
Dombrowski
, and
F. H.
Knelman
, “
Liquid entrainment 1. The mechanism of drop formation from gas or vapor bubbles
,”
Trans. Inst. Chem. Eng.
32
,
244
(
1954
).
33.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Pergamon Press
,
London, UK
,
1959
).
34.
J. E.
Shepherd
, “
Dynamics of vapor explosions: Rapid evaporation and instability of butane droplets exploding at the superheat limit
,” Ph.D. thesis,
California Institute of Technology
,
1981
.
35.
D.
Frost
and
B.
Sturtevant
, “
Effects of ambient pressure on the instability of a liquid boiling explosively at the superheat limit
,”
J. Heat Transfer
108
,
418
(
1986
).
36.
J. E.
Shepherd
and
B.
Sturtevant
, “
Rapid evaporation at superheat limit
,”
J. Fluid Mech.
121
,
379
(
1982
).
37.
J. G.
Xie
,
T. E.
Ruekgauer
, and
R. L.
Armstrong
, “
Evaporative instability in pulsed laser-heated droplets
,”
Phys. Rev. Lett.
66
,
2988
(
1991
).
38.
Y.
Gan
and
L.
Qiao
, “
Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles
,”
Combust. Flame
158
,
354
368
(
2011
).
39.
W. M.
Sirignano
,
Fluid Dynamics and Transport of Droplets and Sprays
(
Cambridge University Press
,
New York, USA
,
2010
).
40.
M.
Renksizbulut
and
M. C.
Yuen
, “
Experimental study of droplet evaporation in high temperature air stream
,”
J. Heat Transfer
105
,
384
388
(
1983
).

Supplementary Material

You do not currently have access to this content.