In their daily lives, flying insects face a gauntlet of environmental challenges, from wind gusts to raindrop impacts. In this combined experimental and theoretical study, we use high-speed videography to film raindrop collisions upon both flying insects and dynamically scaled spherical mimics. We identify three outcomes of the collision based upon the insect's mass and characteristic size: drops push the insect while remaining intact, coat the insect, and splash. We present a mathematical model that predicts impact force and outcome consistent with those found in experiments. Small insects such as gnats and flies are pushed by raindrops that remain intact upon impact; conversely, large flyers such as locusts and micro-aerial vehicles cause drops to splash. We identify a critical mass of 0.3 g for which flyers achieve both peak acceleration (100 g) and applied force (104 dyn) from incoming raindrops; designs of similarly massed flying robots should be avoided.

1.
R.
Wood
, “
The first takeoff of a biologically inspired at-scale robotic insect
,”
IEEE Trans. Robotics
24
,
341
347
(
2008
).
2.
G.
De Croon
,
K.
De Clercq
,
R.
Ruijsink
,
B.
Remes
, and
C.
De Wagter
, “
Design, aerodynamics, and vision-based control of the DelFly
,”
Int. J. Micro Air Vehicles
1
,
71
97
(
2009
).
3.
C.
Richter
and
H.
Lipson
, “
Untethered hovering flapping flight of a 3D-printed mechanical insect
,”
Artif. Life
17
,
73
86
(
2011
).
4.
F.
Van Breugel
,
Z.
Teoh
, and
H.
Lipson
, “
A passively stable hovering flapping micro-air vehicle
,”
Flying Insects and Robots
(
Springer
,
2010
), pp.
171
184
.
5.
G. J.
Amador
,
Y.
Yamada
,
M.
McCurley
, and
D. L.
Hu
, “
Splash-cup plants accelerate raindrops to disperse seeds
,”
J. R. Soc. Interface
10
,
0880
(
2013
).
6.
D.
Attenborough
,
Life in the Undergrowth
(
BBC One
,
2005
).
7.
E.
Reyssat
,
F.
Chevy
,
A.-L.
Biance
,
L.
Petitjean
, and
D.
Quéré
, “
Shape and instability of free-falling liquid globules
,”
Europhys. Lett.
80
,
34005
(
2007
).
8.
C.
Voigt
,
K.
Schneeberger
,
S.
Voigt-Heucke
, and
D.
Lewanzik
, “
Rain increases the energy cost of bat flight
,”
Biol. Lett.
7
,
793
795
(
2011
).
9.
V.
Ortega-Jimenez
and
R.
Dudley
, “
Aerial shaking performance of wet Anna's hummingbirds
,”
J. R. Soc. Interface
9
,
1093
1099
(
2011
).
10.
A. K.
Dickerson
,
P. G.
Shankles
,
N. M.
Madhavan
, and
D. L.
Hu
, “
Mosquitoes survive raindrop collisions by virtue of their low mass
,”
Proc. Natl. Acad. Sci. U.S.A.
109
,
9822
9827
(
2012
).
11.
T.
Weis-Fogh
, “
Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production
,”
J. Exp. Biol.
59
,
169
230
(
1973
).
12.
A. R.
Ennos
, “
The kinematics and aerodynamics of the free flight of some Diptera
,”
J. Exp. Biol.
142
,
49
85
(
1989
).
13.
S. N.
Fry
,
R.
Sayaman
, and
M. H.
Dickinson
, “
The aerodynamics of hovering flight in Drosophila
,”
J. Exp. Biol.
208
,
2303
2318
(
2005
).
14.
C.
Ellington
, “
The aerodynamics of hovering insect flight. III. Kinematics
,”
Philos. Trans. R. Soc. London, Ser. B
305
,
41
78
(
1984
).
15.
C.
Ellington
, “
The aerodynamics of hovering insect flight. II. Morphological parameters
,”
Philos. Trans. R. Soc. London, Ser. B
305
,
17
40
(
1984
).
16.
Y.
Liu
and
M.
Sun
, “
Wing kinematics measurement and aerodynamics of hovering droneflies
,”
J. Exp. Biol.
211
,
2014
2025
(
2008
).
17.
R.
Dudley
, “
Extraordinary flight performance of orchid bees (Apidae: Euglossini) hovering in heliox (80% He/20% O2)
,”
J. Exp. Biol.
198
,
1065
1070
(
1995
).
18.
R.
Dudley
and
C.
Ellington
, “
Mechanics of forward flight in bumblebees: I. Kinematics and morphology
,”
J. Exp. Biol.
148
,
19
52
(
1990
).
19.
A. P.
Willmott
and
C. P.
Ellington
, “
The mechanics of flight in the hawkmoth manduca sexta. II. Aerodynamic consequences of kinematic and morphological variation
,”
J. Exp. Biol.
200
,
2723
2745
(
1997
).
20.
A. P.
Willmott
and
C. P.
Ellington
, “
The mechanics of flight in the hawkmoth Manduca sexta. I. Kinematics of hovering and forward flight
,”
J. Exp. Biol.
200
,
2705
2722
(
1997
).
21.
P.
Chai
and
D.
Millard
, “
Flight and size constraints: Hovering performance of large hummingbirds under maximal loading
,”
J. Exp. Biol.
200
,
2757
2763
(
1997
).
22.
D.
Byun
 et al, “
Wetting characteristics of insect wing surfaces
,”
J. Bionic Eng.
6
,
63
70
(
2009
).
23.
Y.
Zheng
,
X.
Gao
, and
L.
Jiang
, “
Directional adhesion of superhydrophobic butterfly wings
,”
Soft Matter
3
,
178
182
(
2007
).
24.
E.
Villermaux
,
B.
Bossa
 et al, “
Drop fragmentation on impact
,”
J. Fluid Mech.
668
,
412
435
(
2011
).
25.
A.
Yarin
, “
Drop impact dynamics: Splashing, spreading, receding, bouncing …
,”
Annu. Rev. Fluid Mech.
38
,
159
192
(
2006
).
26.
Y.
Jiang
,
A.
Umemura
, and
C.
Law
, “
An experimental investigation on the collision behaviour of hydrocarbon droplets
,”
J. Fluid Mech.
234
,
171
190
(
1992
).
27.
M.
Orme
, “
Experiments on droplet collisions, bounce, coalescence and disruption
,”
Prog. Energy Combust. Sci.
23
,
65
79
(
1997
).
28.
M.
Rein
, “
Phenomena of liquid drop impact on solid and liquid surfaces
,”
Fluid Dyn. Res.
12
,
61
93
(
1993
).
29.
J.
Field
,
J.
Dear
, and
J.
Ogren
, “
The effects of target compliance on liquid drop impact
,”
J. Appl. Phys.
65
,
533
540
(
1989
).
30.
S.
Bakshi
,
I.
Roisman
, and
C.
Tropea
, “
Investigations on the impact of a drop onto a small spherical target
,”
Phys. Fluids
19
,
032102
(
2007
).
31.
A.
Rozhkov
,
B.
Prunet-Foch
, and
M.
Vignes-Adler
, “
Dynamics of a liquid lamella resulting from the impact of a water drop on a small target
,”
Proc. R. Soc. London, Ser. A
460
,
2681
(
2004
).
32.
A.
Rozhkov
,
B.
Prunet-Foch
, and
M.
Vignes-Adler
, “
Impact of water drops on small targets
,”
Phys. Fluids
14
,
3485
(
2002
).
33.
M.
Bussmann
,
J.
Mostaghimi
, and
S.
Chandra
, “
On a three-dimensional volume tracking model of droplet impact
,”
Phys. Fluids
11
,
1406
(
1999
).
34.
S.
Chandra
and
C.
Avedisian
, “
On the collision of a droplet with a solid surface
,”
Proc. Math. Phys. Sci.
432
,
13
41
(
1991
).
35.
D.
Hauser
,
P.
Amayenc
,
B.
Nutten
, and
P.
Waldteufel
, “
A new optical instrument for simultaneous measurement of raindrop diameter and fall speed distributions
,”
J. Atmos. Oceanic Technol.
1
,
256
269
(
1984
).
36.
R.
Gunn
and
G.
Kinzer
, “
The terminal velocity of fall for water droplets in stagnant air
,”
J. Meteorol.
6
,
243
248
(
1949
).
37.
C.
Clanet
,
C.
Béguin
,
D.
Richard
, and
D.
Quéré
, “
Maximal deformation of an impacting drop
,”
J. Fluid Mech.
517
,
199
208
(
2004
).
38.
J. E.
McDonald
, “
Collection and washout of airborne pollens and spores by raindrops
,”
Science
135
,
435
437
(
1962
).
39.
J. P.
Stapp
, “
Effects of mechanical force on living tissues
,”
J. Aviation Med.
26
,
268
(
1955
).
40.
H.
Bennet-Clark
and
E.
Lucey
, “
The jump of the flea: A study of the energetics and a model of the mechanism
,”
J. Exp. Biol.
47
,
59
76
(
1967
).
41.
M.
Pasandideh-Fard
,
Y.
Qiao
,
S.
Chandra
, and
J.
Mostaghimi
, “
Capillary effects during droplet impact on a solid surface
,”
Phys. Fluids
8
,
650
(
1996
).
42.
C.
Mundo
,
M.
Sommerfeld
, and
C.
Tropea
, “
Droplet-wall collisions: Experimental studies of the deformation and breakup process
,”
Int. J. Multiphase Flow
21
,
151
173
(
1995
).
43.
J.
Keller
, “
Teapot effect
,”
J. Appl. Phys.
28
,
859
864
(
1957
).
44.
C.
Duez
,
C.
Ybert
,
C.
Clanet
, and
L.
Bocquet
, “
Wetting controls separation of inertial flows from solid surfaces
,”
Phys. Rev. Lett.
104
,
084503
(
2010
).
45.
T. A.
McMahon
and
J. T.
Bonner
,
On Size and Life
(
Scientific American Books
,
New York, NY
,
1983
).
46.
K.
Schmidt-Nielson
,
Scaling
(
Cambridge University Press
,
New York, NY
,
1984
).
47.
C.
Ellington
, “
Limitations on animal flight performance
,”
J. Exp. Biol.
160
,
71
91
(
1991
).
48.
O.
Povarov
,
O.
Nazarov
,
L.
Ignat'evskaya
, and
A.
Nikol'skii
, “
Interaction of drops with boundary layer on rotating surface
,”
J. Eng. Phys. Thermophys.
31
,
1453
1456
(
1976
).
You do not currently have access to this content.