A hybrid numerical capability is developed for the simulation of offshore wind farms, in which large-eddy simulation is performed for the wind turbulence, and a potential flow based method is used for the simulation of the ocean wave field. The wind and wave simulations are dynamically coupled. The effect of wind turbines on the wind field is represented by an actuator disk model. This study focuses on the effect of wind-seas, and the turbine motion is treated as negligibly small. A variety of fully-developed and fetch-limited wind-sea conditions and turbine spacings are considered in the study. Statistical analyses are performed for the simulation results, with a focus on the mean wind profile, kinetic energy budget in the wind field, and the wind turbine power extraction rate. The results indicate that the waves have appreciable effect on the wind farm performance. The wind turbines obtain a higher wind power extraction rate under the fully developed wind-sea condition compared with that under the fetch-limited condition. This higher extraction rate is caused by the faster propagating waves and the lower sea-surface resistance on the wind when the wind-seas are fully developed. The wave-induced difference can be as high as 8% with the commonly used turbine spacing in commercial land-based wind farms, sx = 7 (with sx being the ratio of streamwise turbine spacing to the turbine diameter). Such level of difference is noteworthy considering the previous understanding that direct wave-induced disturbance to the wind field decays exponentially away from wave surface.

1.
H.
Snel
, “
Review of the present status of rotor aerodynamics
,”
Wind Energy
1
,
46
(
1998
).
2.
A.
Crespo
,
J.
Hernández
, and
S.
Frandsen
, “
Survey of modeling methods for wind turbine wakes and wind farms
,”
Wind Energy
2
,
1
(
1999
).
3.
T.
Burton
,
D.
Sharpe
,
N.
Jenkins
, and
E.
Bossanyi
,
Wind Energy Handbook
(
Wiley
,
2001
).
4.
L. J.
Vermeer
,
J. N.
Sørensen
, and
A.
Crespo
, “
Wind turbine wake aerodynamics
,”
Prog. Aeronaut. Sci.
39
,
467
(
2003
).
5.
A.
Jimenez
,
A.
Crespo
,
E.
Migoya
, and
J.
Garcia
, “
Advances in large-eddy simulation of a wind turbine wake
,”
J, Phys.: Conf. Ser.
75
,
012041
(
2007
).
6.
A.
Jimenez
,
A.
Crespo
,
E.
Migoya
, and
J.
Garcia
, “
Large-eddy simulation of spectral coherence in a wind turbine wake
,”
Environ. Res. Lett.
3
,
015004
(
2008
).
7.
N.
Troldborg
,
J. N.
Sorensen
, and
R.
Mikkelsen
, “
Numerical simulations of wake characteristics of a wind turbine in uniform inflow
,”
Wind Energy
13
,
86
(
2010
).
8.
Y.-T.
Wu
and
F.
Porté-Agel
, “
Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations
,”
Boundary-Layer Meteorol.
138
,
345
(
2011
).
9.
L. P.
Chamorro
and
F.
Porté-Agel
, “
Effects of thermal stability and incoming boundary-layer flow characteristics on wind-turbine wakes: a wind-tunnel study
,”
Boundary-Layer Meteorol.
136
,
515
(
2010
).
10.
S.
Baidya Roy
,
S. W.
Pacala
, and
R. L.
Walko
, “
Can large wind farms affect local meteorology
?”
J. Geophys. Res.
109
,
D19101
, doi: (
2004
).
11.
M.
Calaf
,
C.
Meneveau
, and
J.
Meyers
, “
Large eddy simulation study of fully developed wind-turbine array boundary layers
,”
Phys. Fluids
22
,
015110
(
2010
).
12.
E.
Hau
,
Wind Turbines: Fundamentals, Technologies, Applications, Economics
(
Springer
,
Berlin
,
2005
).
13.
R. B.
Cal
,
J.
Lebrón
,
L.
Castillo
,
H. S.
Kang
, and
C.
Meneveau
, “
Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer
,”
J. Renewable Sustainable Energy
2
,
013106
(
2010
).
14.
X.
Yang
,
S.
Kang
, and
F.
Sotiropoulos
, “
Computational study and modeling of turbine spacing effects in infinite aligned wind farms
,”
Phys. Fluids
24
,
115107
(
2012
).
15.
L. P.
Chamorro
and
F.
Porté-Agel
, “
Turbulent flow inside and above a wind farm: a wind-tunnel study
,”
Energies
4
,
1916
(
2011
).
16.
S.
Butterfield
,
W.
Musial
,
J.
Jonkman
, and
P. D.
Sclavounos
, “
Engineering challenges for floating offshore wind turbines
,”
National Renewable Energy Laboratory
, Technical Report No. NREL/CP-500-38776,
2007
.
17.
U.S. Department of Energy
, “
20% wind energy by 2030: Increasing wind energy's contribution to U.S. electricity supply
,” Technical Report No. DOE/GO-102008-2567,
2008
.
18.
P. P.
Sullivan
and
J. C.
McWilliams
, “
Dynamics of winds and currents coupled to surface waves
,”
Annu. Rev. Fluid Mech.
42
,
19
(
2010
).
19.
R. L.
Snyder
,
F. W.
Dobson
,
J. A.
Elliott
, and
R. B.
Long
, “
Array measurements of atmospheric pressure fluctuations above surface gravity waves
,”
J. Fluid Mech.
102
,
1
(
1981
).
20.
M. A.
Donelan
,
A. V.
Babanin
,
I. R.
Young
, and
M. L.
Banner
, “
Wave-follower field measurements of the wind-input spectral function
,”
J. Phys. Oceanogr.
36
,
1672
(
2006
).
21.
D. S.
Henn
and
R. I.
Sykes
, “
Large-eddy simulation of flow over wavy surfaces
,”
J. Fluid Mech.
383
,
75
(
1999
).
22.
V.
Armenio
and
U.
Piomelli
, “
A Lagrangian mixed subgrid-scale model in generalized coordinates
,”
Flow, Turbul. Combust.
65
,
51
(
2000
).
23.
P. P.
Sullivan
,
J. E.
Edson
,
T.
Hristov
, and
J. C.
McWilliams
, “
Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves
,”
J. Atmos. Sci.
65
,
1225
(
2008
).
24.
D.
Yang
and
L.
Shen
, “
Simulation of viscous flows with undulatory boundaries. Part I: Basic solver
,”
J. Comput. Phys.
230
,
5488
(
2011
).
25.
D.
Yang
and
L.
Shen
, “
Simulation of viscous flows with undulatory boundaries. Part II: Coupling with other solvers for two-fluid computations
,”
J. Comput. Phys.
230
,
5510
(
2011
).
26.
Y.
Liu
,
D.
Yang
,
X.
Guo
, and
L.
Shen
, “
Numerical study of pressure forcing of wind on dynamically evolving water waves
,”
Phys. Fluids
22
,
041704
(
2010
).
27.
J.
Meyers
and
C.
Meneveau
, “
Optimal turbine spacing in fully developed wind farm boundary layers
,”
Wind Energy
15
,
305
(
2012
).
28.
E.
Bou-Zeid
,
C.
Meneveau
, and
M.
Parlange
, “
A scale-dependent lagrangian dynamic model for large eddy simulation of complex turbulent flows
,”
Phys. Fluids
17
,
025105
(
2005
).
29.
E. N.
Wayman
,
P. D.
Sclavounos
,
S.
Butterfield
,
J.
Jonkman
, and
W.
Musial
, “
Coupled dynamic modeling of floating wind turbine systems
,”
National Renewable Energy Laboratory
, Technical Report No. NREL/CP-500-39481,
2006
.
30.
D.
Roddier
,
C.
Cermelli
,
A.
Aubault
, and
A.
Weinstein
, “
WindFloat: A floating foundation for offshore wind turbines
,”
J. Renewable Sustainable Energy
2
,
033104
(
2010
).
31.
K.
Hasselmann
,
T. P.
Barnett
,
E.
Bouws
,
H.
Carlson
,
D. E.
Cartwright
,
K.
Enke
,
J. A.
Ewing
,
H.
Gienapp
,
D. E.
Hasselmann
,
P.
Kruseman
,
A.
Meerburg
,
P.
Müller
,
D. J.
Olbers
,
K.
Richter
,
W.
Sell
, and
H.
Walden
, “
Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP)
,”
Dtsch. Hydrogr. Z. Suppl.
8
,
N12
(
1973
).
32.
W. J.
Pierson
and
L.
Moskowitz
, “
A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigordskii
,”
J. Geophys. Res.
69
,
5181
, doi: (
1964
).
33.
J.
Meyers
and
C.
Meneveau
, “
Large eddy simulation of large wind-turbine arrays in the atmospheric boundary layer
,” AIAA Paper 2010-827,
2010
.
34.
M.
Calaf
,
M.
Parlange
, and
C.
Meneveau
, “
Large eddy simulation study of scalar transport in fully developed windturbine array boundary layers
,”
Phys. Fluids
23
,
126603
(
2011
).
35.
C.
Meneveau
,
T.
Lund
, and
W.
Cabot
, “
A Lagrangian dynamic subgrid-scale model of turbulence
,”
J. Fluid Mech.
319
,
353
(
1996
).
36.
F.
Porté-Agel
,
C.
Meneveau
, and
M. B.
Parlange
, “
A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer
,”
J. Fluid Mech.
415
,
261
(
2000
).
37.
F.
Wan
,
F.
Porté-Agel
, and
R.
Stoll
, “
Evaluation of dynamic subgrid-scale models in large-eddy simulations of neutral turbulent flow over a two-dimensional sinusoidal hill
,”
Atmos. Environ.
41
,
2719
(
2007
).
38.
D. G.
Dommermuth
and
D. K. P.
Yue
, “
A high-order spectral method for the study of nonlinear gravity waves
,”
J. Fluid Mech.
184
,
267
(
1987
).
39.
V. E.
Zakharov
, “
Stability of periodic wave of finite amplitude on the surface of a deep fluid
,”
J. Appl. Mech. Tech. Phys.
9
,
190
(
1968
).
40.
D.
Yang
and
L.
Shen
, “
Characteristics of coherent vortical structures in turbulent flows over progressive surface waves
,”
Phys. Fluids
21
,
125106
(
2009
).
41.
D.
Yang
and
L.
Shen
, “
Direct-simulation-based study of turbulent flow over various waving boundaries
,”
J. Fluid Mech.
650
,
131
(
2010
).
42.
J. N.
Sørensen
and
W. Z.
Shen
, “
Numerical modeling of wind turbine wakes
,”
J. Fluids Eng.
124
,
393
(
2002
).
43.
L.
Ge
and
F.
Sotiropoulos
, “
A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries
,”
J. Comput. Phys.
225
,
1782
(
2007
).
44.
F.
Porté-Agel
,
Y.-T.
Wu
,
H.
Lu
, and
R. J.
Conzemius
, “
Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms
,”
J. Wind Eng. Ind. Aerodyn.
99
,
154
(
2011
).
45.
J.
Smagorinsky
, “
General circulation experiments with the primitive equations. I. The basic experiment
,”
Mon. Weather Rev.
91
,
99
(
1963
).
46.
R. J. A. M.
Stevens
,
D. F.
Gayme
, and
C.
Meneveau
, “
Effect of turbine alignment on the average power output of wind-farms
,” in
Proceedings of the 2013 International Conference on Aerodynamics of Offshore Wind Energy Systems and Wakes
(
Technical University of Denmark
,
2013
), p.
611
; see http://indico.conferences.dtu.dk/internalPage.py?pageId=13&confId=126.
47.
C.
VerHulst
and
C.
Meneveau
, “
LES study of the impact of various wind turbine actuator forcings on kinetic energy entrainment in large wind farms
,” in
Proceedings of the 2013 International Conference on Aerodynamics of Offshore Wind Energy Systems and Wakes
(
Technical University of Denmark
,
2013
), p.
657
; See http://indico.conferences.dtu.dk/internalPage.py?pageId=13&confId=126.
48.
R. J. A. M.
Stevens
,
J.
Graham
, and
C.
Meneveau
, “
A concurrent precursor inflow method for Large Eddy Simulations and applications to finite length wind farms
,”
Renewable Energy
(to be published).
49.
M. R.
Raupach
,
R. A.
Antonia
, and
S.
Rajagopalan
, “
Rough-wall turbulent boundary layers
,”
Appl. Mech. Rev.
44
,
1
(
1991
).
50.
O.
Coceal
,
T. G.
Thomas
,
I. P.
Castro
, and
S. E.
Belcher
, “
Mean flow and turbulence statistics over groups of urban-like cubical obstacles
,”
Boundary-Layer Meteorol.
121
,
491
(
2006
).
51.
S. E.
Belcher
and
J. C. R.
Hunt
, “
Turbulent flow over hills and waves
,”
Annu. Rev. Fluid Mech.
30
,
507
(
1998
).
52.
D. E.
Hasselmann
,
M.
Dunckel
, and
J. A.
Ewing
, “
Directional wave spectra observed during JONSWAP 1973
,”
J. Phys. Oceanogr.
10
,
1264
(
1980
).
53.
D. G.
Dommermuth
, “
The initialization of nonlinear waves using an adjustment scheme
,”
Wave Motion
32
,
307
(
2000
).
54.
C. C.
Mei
,
M.
Stiassnie
, and
D. K. P.
Yue
,
Theory and Applications of Ocean Surface Waves Part 2: Nonlinear Aspects
(
World Scientific
,
Singapore
,
2005
).
55.
D. G.
Dommermuth
,
T. C.
Fu
,
K. A.
Brucker
,
T. T.
O'Shea
, and
D. C.
Wyatt
, “
Numerical prediction of a seaway
,” in
Proceedings of the 28th Symposium on Naval Hydrodynamics
(
Office of Naval Research
,
Arlington, VA, USA
,
2010
), p.
276
.
56.
W.
Xiao
,
Y.
Liu
,
G.
Wu
, and
D. K. P.
Yue
, “
Rogue wave occurrence and dynamics by direct simulations of nonlinear wavefield evolution
,”
J. Fluid Mech.
720
,
357
(
2013
).
57.
D.
Yang
,
C.
Meneveau
, and
L.
Shen
, “
Dynamic modeling of sea-surface roughness for large-eddy simulation of wind over ocean wavefield
,”
J. Fluid Mech.
726
,
62
(
2013
).
58.
H.
Charnock
, “
Wind stress on a water surface
,”
Q. J. R. Meteorol. Soc.
81
,
639
(
1955
).
59.
Y.
Toba
,
S. D.
Smith
, and
N.
Ebuchi
, “
Historical drag expressions
,” in
Wind Stress Over the Ocean
, edited by
I. S. F.
Jones
and
Y.
Toba
(
Cambridge University Press
,
New York
,
2001
), pp.
35
53
.
60.
D.
Yang
,
L.
Shen
, and
C.
Meneveau
, “
An assessment of dynamic subgrid-scale sea-surface roughness models
,”
Flow, Turbul. Combust.
91
,
541
(
2013
).
61.
J.
O'Neil
and
C.
Meneveau
, “
Subgrid-scale stresses and their modelling in a turbulet plane wake
,”
J. Fluid Mech.
349
,
253
(
1997
).
62.
S.
Frandsen
, “
On the wind speed reduction in the center of large clusters of wind turbines
,”
J. Wind Eng. Ind. Aerodyn.
39
,
251
(
1992
).
63.
P. P.
Sullivan
,
J. C.
McWilliams
, and
C.-H.
Moeng
, “
Simulation of turbulent flow over idealized water waves
,”
J. Fluid Mech.
404
,
47
(
2000
).
64.
Y.
Liu
and
D. K. P.
Yue
, “
On generalized Bragg scattering of surface waves by bottom ripples
,”
J. Fluid Mech.
356
,
297
(
1998
).
65.
M.-R.
Alam
,
Y.
Liu
, and
D. K. P.
Yue
, “
Oblique sub- and super-harmonic Bragg resonance of surface waves by bottom ripples
,”
J. Fluid Mech.
643
,
437
(
2010
).
66.
M.-R.
Alam
,
Y.
Liu
, and
D. K. P.
Yue
, “
Attenuation of short surface waves by the sea floor via nonlinear sub-harmonic interaction
,”
J. Fluid Mech.
689
,
529
(
2011
).
67.
D. G.
Dommermuth
and
D. K. P.
Yue
, “
The nonlinear three-dimensional waves generated by a moving surface disturbance
,” in
Proceedings of the 17th Symposium on Naval Hydrodynamics, Hague, The Netherlands
(
National Academy Press
,
Washington DC
,
1988
).
You do not currently have access to this content.