Dynamic mode decomposition (DMD) represents an effective means for capturing the essential features of numerically or experimentally generated flow fields. In order to achieve a desirable tradeoff between the quality of approximation and the number of modes that are used to approximate the given fields, we develop a sparsity-promoting variant of the standard DMD algorithm. Sparsity is induced by regularizing the least-squares deviation between the matrix of snapshots and the linear combination of DMD modes with an additional term that penalizes the ℓ1-norm of the vector of DMD amplitudes. The globally optimal solution of the resulting regularized convex optimization problem is computed using the alternating direction method of multipliers, an algorithm well-suited for large problems. Several examples of flow fields resulting from numerical simulations and physical experiments are used to illustrate the effectiveness of the developed method.

1.
J.
Lumley
,
Stochastic Tools in Turbulence
(
Dover Publications
,
Mineola, NY
,
2007
).
2.
L.
Sirovich
, “
Turbulence and the dynamics of coherent structures. Part I: Coherent structures
,”
Q. Appl. Math.
45
(
3
),
561
571
(
1987
).
3.
D.
Sipp
,
O.
Marquet
,
P.
Meliga
, and
A.
Barbagallo
, “
Dynamics and control of global instabilities in open flows: A linearized approach
,”
Appl. Mech. Rev.
63
,
030801
(
2010
).
4.
B.
Moore
, “
Principal component analysis in linear systems: Controllability, observability and model reduction
,”
IEEE Trans. Autom. Control
AC-26
(
1
),
17
32
(
1981
).
5.
C.
Rowley
, “
Model reduction for fluids using balanced proper orthogonal decomposition
,”
Int. J. Bifurcation Chaos
,
15
,
997
1013
(
2005
).
6.
I.
Mezić
, “
Spectral properties of dynamical systems, model reduction and decompositions
,”
Nonlinear Dyn.
41
(
1
),
309
325
(
2005
).
7.
C.
Rowley
,
I.
Mezic
,
S.
Bagheri
,
P.
Schlatter
, and
D.
Henningson
, “
Spectral analysis of nonlinear flows
,”
J. Fluid Mech.
641
,
115
127
(
2009
).
8.
I.
Mezić
, “
Analysis of fluid flows via spectral properties of Koopman operator
,”
Annu. Rev. Fluid Mech.
45
(
1
),
357
378
(
2013
).
9.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
10.
L. N.
Trefethen
,
A. E.
Trefethen
,
S. C.
Reddy
, and
T. A.
Driscoll
, “
Hydrodynamic stability without eigenvalues
,”
Science
261
,
578
584
(
1993
).
11.
M. R.
Jovanović
and
B.
Bamieh
, “
Componentwise energy amplification in channel flows
,”
J. Fluid Mech.
534
,
145
183
(
2005
).
12.
P. J.
Schmid
, “
Nonmodal stability theory
,”
Annu. Rev. Fluid Mech.
39
,
129
162
(
2007
).
13.
S.
Bagheri
, “
Koopman-mode decomposition of the cylinder wake
,”
J. Fluid Mech.
726
,
596
623
(
2013
).
14.
K. K.
Chen
,
J. H.
Tu
, and
C. W.
Rowley
, “
Variants of dynamic mode decomposition: Boundary condition, Koopman, and Fourier analyses
,”
J. Nonlinear Sci.
22
(
6
),
887
915
(
2012
).
15.
P. J.
Goulart
,
A.
Wynn
, and
D.
Pearson
, “
Optimal mode decomposition for high dimensional systems
,” in
Proceedings of the 51st IEEE Conference on Decision and Control
, 2012 (
IEEE
,
2012
), pp.
4965
4970
.
16.
A.
Wynn
,
D.
Pearson
,
B.
Ganapathisubramani
, and
P. J.
Goulart
, “
Optimal mode decomposition for unsteady flows
,”
J. Fluid Mech.
733
,
473
503
(
2013
).
17.
S.
Boyd
and
L.
Vandenberghe
,
Convex Optimization
(
Cambridge University Press
,
New York, NY
,
2004
).
18.
E. J.
Candès
,
J.
Romberg
, and
T.
Tao
, “
Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
,”
IEEE Trans. Inf. Theory
52
(
2
),
489
509
(
2006
).
19.
D. L.
Donoho
, “
Compressed sensing
,”
IEEE Trans. Inf. Theory
52
(
4
),
1289
1306
(
2006
).
20.
E. J.
Candès
and
T.
Tao
, “
Near optimal signal recovery from random projections: Universal encoding strategies?
,”
IEEE Trans. Inf. Theory
52
(
12
),
5406
5425
(
2006
).
21.
E. J.
Candès
,
M. B.
Wakin
, and
S. P.
Boyd
, “
Enhancing sparsity by reweighted ℓ1 minimization
,”
J. Fourier Anal. Appl.
14
,
877
905
(
2008
).
22.
T.
Hastie
,
R.
Tibshirani
, and
J.
Friedman
,
The Elements of Statistical Learning
(
Springer
,
New York, NY
,
2009
).
23.
T.
Goldstein
and
S.
Osher
, “
The split Bregman method for ℓ1 regularized problems
,”
SIAM J. Imaging Sci.
2
(
2
),
323
343
(
2009
).
24.
S.
Boyd
,
N.
Parikh
,
E.
Chu
,
B.
Peleato
, and
J.
Eckstein
, “
Distributed optimization and statistical learning via the alternating direction method of multipliers
,”
Found. Trends Mach. Learning
3
(
1
),
1
124
(
2011
).
25.
F.
Lin
,
M.
Fardad
, and
M. R.
Jovanović
, “
Design of optimal sparse feedback gains via the alternating direction method of multipliers
,”
IEEE Trans. Automat. Control
58
(
9
),
2426
2431
(
2013
).
26.
M.
Grant
and
S.
Boyd
, “
CVX: Matlab software for disciplined convex programming, version 2.0 beta
,”
2012
, see http://cvxr.com/cvx.
27.
E.
Ghadimi
,
A.
Teixeira
,
I.
Shames
, and
M.
Johansson
, “
On the optimal step-size selection for the alternating direction method of multipliers
,” in
Preprints of the 3rd IFAC Workshop on Distributed Estimation and Control in Networked Systems, Santa Barbara
, CA, 2012 (
International Federation of Automatic Control
,
2012
), pp.
139
144
.
28.
E.
Ghadimi
,
A.
Teixeira
,
I.
Shames
, and
M.
Johansson
, “
Optimal parameter selection for the alternating direction method of multipliers (ADMM): Quadratic problems
IEEE Trans. Automat. Control
(submitted); e-print: arXiv:1306.2454.
29.
P. J.
Schmid
and
D. S.
Henningson
,
Stability and Transition in Shear Flows
(
Springer-Verlag
,
New York, NY
,
2001
).
30.
J. A. C.
Weideman
and
S. C.
Reddy
, “
A MATLAB differentiation matrix suite
,”
ACM Trans. Math. Softw.
26
(
4
),
465
519
(
2000
).
31.
C. K. W.
Tam
, “
Supersonic jet noise
,”
Annu. Rev. Fluid Mech.
27
,
17
43
(
1995
).
32.
F. C.
Frate
and
J. E.
Bridges
, “
Extensible rectangular nozzle model system
,”
AIAA Paper 2011–975
,
2011
.
33.
J. W.
Nichols
,
F. E.
Ham
, and
S. K.
Lele
, “
High-fidelity large-eddy simulation for supersonic rectangular jet noise prediction
,”
AIAA Paper 2011–2919
,
2011
.
34.
P. G.
Constantine
and
D. F.
Gleich
, “
Tall and skinny QR factorizations in MapReduce architectures
,” in
Proceedings of the 2nd International Workshop on MapReduce and its Applications
, 2011 (
ACM
,
New York, NY
,
2011
), pp.
43
50
.
35.
S.
Kakac
and
H.
Liu
,
Heat Exchangers: Selection, Rating and Thermal Design
(
CRC Press
,
Boca Raton, FL
,
1997
).
36.
P.
Rollet-Miet
,
D.
Laurence
, and
J.
Ferziger
, “
LES and RANS of turbulent flow in tube bundles
,”
Int. J. Heat Fluid Flow
20
,
241
254
(
1999
).
37.
D.
Sumner
,
S.
Price
, and
M.
Paidoussis
, “
Flow-pattern identification for two staggered circular cylinders in cross-flow
,”
J. Fluid Mech.
411
,
263
303
(
2000
).
38.
S.
Benhamadouche
and
D.
Laurence
, “
LES, coarse LES, and transient RANS comparisons on the flow across a tube bundle
,”
Int. J. Heat Fluid Flow
24
,
470
479
(
2003
).
39.
C.
Moulinec
,
M.
Pourquié
,
B.
Boersma
,
T.
Buchal
, and
F.
Nieuwstadt
, “
Direct numerical simulation on a Cartesian mesh of the flow through a tube bundle
,”
Int. J. Comput. Fluid Dyn.
18
,
1
14
(
2004
).
40.
C.
Liang
and
G.
Papadakis
, “
Large eddy simulation of cross-flow through a staggered tube bundle at subcritical Reynolds number
,”
J. Fluids Struct.
23
,
1215
1230
(
2007
).
41.
Y.
Hassan
and
H.
Barsamian
, “
Turbulence simulation in tube bundle geometries using the dynamic subgrid-scale model
,”
Nucl. Tech. J.
128
,
58
74
(
1999
).
42.
See supplementary material at http://dx.doi.org/10.1063/1.4863670 for a brief description of MATLAB implementation of the Sparsity-Promoting Dynamic Mode Decomposition (DMDSP) algorithm and for additional information about the examples considered in this paper, including Matlab source codes and problem data.

Supplementary Material

You do not currently have access to this content.