It is shown theoretically that an electric field can be used to control and suppress the classical Rayleigh-Taylor instability found in stratified flows when a heavy fluid lies above lighter fluid. Dielectric fluids of arbitrary viscosities and densities are considered and a theory is presented to show that a horizontal electric field (acting in the plane of the undisturbed liquid-liquid surface), causes growth rates and critical stability wavenumbers to be reduced thus shifting the instability to longer wavelengths. This facilitates complete stabilization in a given finite domain above a critical value of the electric field strength. Direct numerical simulations based on the Navier-Stokes equations coupled to the electrostatic fields are carried out and the linear theory is used to critically evaluate the codes before computing into the fully nonlinear stage. Excellent agreement is found between theory and simulations, both in unstable cases that compare growth rates and in stable cases that compare frequencies of oscillation and damping rates. Computations in the fully nonlinear regime supporting finger formation and roll-up show that a weak electric field slows down finger growth and that there exists a critical value of the field strength, for a given system, above which complete stabilization can take place. The effectiveness of the stabilization is lost if the initial amplitude is large enough or if the field is switched on too late. We also present a numerical experiment that utilizes a simple on-off protocol for the electric field to produce sustained time periodic interfacial oscillations. It is suggested that such phenomena can be useful in inducing mixing. A physical centimeter-sized model consisting of stratified water and olive oil layers is shown to be within the realm of the stabilization mechanism for field strengths that are approximately 2 × 104  V/m.

1.
Lord
Rayleigh
, “
Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density
,”
Proc. London Math. Soc.
14
,
170
(
1883
).
2.
G. I.
Taylor
, “
The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I
,”
Proc. R. Soc. London, Ser. A
201
,
192
(
1950
).
3.
S.
Chandrasekhar
,
Hydrodynamic and Hydromagnetic Stability
(
Oxford University Press
,
Oxford
,
1961
), pp.
428
453
.
4.
A. J.
Babchin
,
A. L.
Frenkel
,
B. G.
Levich
, and
G. I.
Sivashinsky
, “
Non-linear saturation of Rayleigh-Taylor instability in thin films
,”
Phys. Fluids
26
,
3159
(
1983
).
5.
D.
Halpern
and
A. L.
Frenkel
, “
Saturated Rayleigh-Taylor instability of an oscillating Couette film flow
,”
J. Fluid Mech.
446
,
67
(
2001
).
6.
D. T.
Papageorgiou
,
C.
Maldarelli
, and
D. S.
Rumschitzki
, “
Nonlinear interfacial stability of core-annular flows
,”
Phys. Fluids A
2
,
340
(
1990
).
7.
B. J.
Lowry
and
P. H.
Steen
, “
Stability of slender liquid bridges subjected to axial flows
,”
J. Fluid Mech.
330
,
189
(
1997
).
8.
O.
Haimovich
and
A.
Oron
, “
Nonlinear dynamics of a thin liquid film on an axially oscillating cylindrical surface
,”
Phys. Fluids
22
,
032101
(
2010
).
9.
D. E.
Weidner
,
L. W.
Schwartz
, and
M. H.
Eres
, “
Simulation of coating layer evolution and drop formation on horizontal cylinders
,”
J. Colloid Interface Sci.
187
,
243
(
1997
).
10.
Z.
Huang
,
A.
De Louca
,
T. J.
Atherton
,
M.
Bird
, and
C.
Rosenblatt
, “
Rayleigh-Taylor instability experiments with precise and arbitrary control of the initial interface shape
,”
Phys. Rev. Lett.
99
,
204502
(
2007
).
11.
J. R.
Melcher
, “
Electrohydrodynamic and magnetohydrodynamic surface waves and instability
,”
Phys. Fluids
4
,
1348
(
1961
).
12.
J. R.
Melcher
,
Field-Coupled Surface Waves
(
Technology Press
,
Cambridge, Massachusetts
,
1963
).
13.
G. I.
Taylor
and
A. D.
McEwan
, “
The stability of a horizontal fluid interface in a vertical electric field
,”
J. Fluid Mech.
22
,
1
(
1965
).
14.
E.
Schaffer
,
T.
Thurn-Albrecht
,
T. P.
Russell
, and
U.
Steiner
, “
Electrically induced structure formation and pattern transfer
,”
Nature
403
,
874
(
2000
).
15.
N.
Wu
and
W. B.
Russel
, “
Micro- and nano-patterns created via electrohydrodynamic instabilities
,”
Nano Today
4
,
180
(
2009
).
16.
J. R.
Melcher
and
E. P.
Warren
, “
Continuum feedback control of a Rayleigh-Taylor type instability
,”
Phys. Fluids
9
,
2085
(
1966
).
17.
B. S.
Tilley
,
P. G.
Petropoulos
, and
D. T.
Papageorgiou
, “
Dynamics and rupture of planar electried liquid sheets
,”
Phys. Fluids
13
,
3547
(
2001
).
18.
K.
Savettaseranee
,
D. T.
Papageorgiou
,
P. G.
Petropoulos
, and
B. S.
Tilley
, “
The effect of electric fields on the rupture of thin viscous films by van der Waals forces
,”
Phys. Fluids
15
,
641
(
2003
).
19.
D. T.
Papageorgiou
and
J.-M.
Vanden-Broeck
, “
Large-amplitude capilarry waves in electrified fluid sheets
,”
J. Fluid Mech.
508
,
71
(
2004
).
20.
S.
Grandison
,
D. T.
Papageorgiou
, and
P. G.
Petropoulos
, “
Interfacial capillary waves in the presence of electric fields
,”
Eur. J. Mech. B: Fluids
26
,
404
(
2007
).
21.
R. J.
Raco
, “
Electrically supported column of liquid
,”
Science
160
,
311
(
1968
).
22.
G. I.
Taylor
, “
Electrically driven jets
,”
Proc. R. Soc. London, Ser. A
313
,
453
(
1969
).
23.
S.
Sankaran
and
D. A.
Saville
, “
Experiments on the stability of a liquid bridge in an axial electric field
,”
Phys. Fluids A
5
,
1081
(
1993
).
24.
A.
Ramos
,
H.
Gonzalez
, and
A.
Castellanos
, “
Experiments on dielectric liquid bridges subjected to axial electric fields
,”
Phys. Fluids
6
,
3206
(
1994
).
25.
C. S.
Burcham
and
D. A.
Saville
, “
The electrohydrodynamic stability of a liquid bridge: microgravity experiments on a bridge suspended in a dielectric gas
,”
J. Fluid Mech.
405
,
37
(
2000
).
26.
L. L.
Barannyk
,
D. T.
Papageorgiou
, and
P. G.
Petropoulos
, “
Supression of Rayleigh-Taylor instability using electric fields
,”
Math. Comput. Simul.
82
,
1008
(
2012
).
27.
N. T.
Eldabe
, “
Effect of a tangential electric field on Rayleigh-Taylor instability
,”
J. Phys. Soc. Jpn.
58
,
115
(
1989
).
28.
A.
Joshi
,
M. C.
Radhakrishna
, and
N.
Rudraiah
, “
Rayleigh-Taylor instability in dielectric fluids
,”
Phys. Fluids
22
,
064102
(
2010
).
29.
S.
Popinet
, “
Gerris: A tree-based adaptive solver for the incompressible Euler equations in complex geometries
,”
J. Comput. Phys.
190
,
572
(
2003
).
30.
A.
Bagué
,
D.
Fuster
,
S.
Popinet
,
R.
Scardovelli
, and
S.
Zaleski
, “
Instability growth rate of two-phase mixing layers from a linear eigenvalue problem and an initial-value problem
,”
Phys. Fluids
22
,
092104
(
2010
).
31.
D.
Fuster
,
A.
Bagué
,
T.
Boeck
,
L.
Le Moyne
,
A.
Leboissetier
,
S.
Popinet
,
P.
Ray
,
R.
Scardovelli
, and
S.
Zaleski
, “
Simulation of primary atomization with an octree adaptive mesh refinement and VOF method
,”
Int. J. Multiphase Flow
35
,
550
(
2009
).
32.
J. M.
López-Herrera
,
S.
Popinet
, and
M. A.
Herrada
, “
A charge-conservative approach for simulating electrohydrodynamic two-phase flows using volume-of-fluid
,”
J. Comput. Phys.
230
,
1939
(
2011
).
33.
H. H.
Woodson
and
J. R.
Melcher
,
Electromechanical Dynamics, Part III: Elastic and Fluid Media
(
Wiley
,
New York
,
1968
), pp.
783
789
.
34.
D. A.
Saville
, “
Electrohydrodyanmics: The Taylor-Melcher leaky dielectric model
,”
Annu. Rev. Fluid Mech.
29
,
27
(
1997
).
35.
C. S.
Burcham
and
D. A.
Saville
, “
Electrohydrodynamic stability: Taylor-Melcher theory for a liquid bridge suspended in a dielectric gas
,”
J. Fluid Mech.
452
,
163
(
2002
).
36.
S.
Popinet
, “
An accurate adaptive solver for surface-tension-driven interfacial flows
,”
J. Comput. Phys.
228
,
5838
(
2009
).
37.
S.
Mahlmann
and
D. T.
Papageorgiou
, “
Numerical study of electric field effects on the deformation of liquid drops in simple shear flow at arbitrary Reynolds number
,”
J. Fluid Mech.
626
,
367
(
2009
).
38.
J. D.
Jackson
,
Classical Electrodynamics
(
Wiley
,
New York
,
1967
), pp.
116
119
.
39.
W. A.
Stygar
,
M. E.
Savage
,
T. C.
Wagoner
,
L. F.
Bennett
,
J. P.
Corley
,
G. L.
Donovan
,
D. L.
Fehl
,
H. C.
Ives
,
K. R.
LeChien
,
G. T.
Leifeste
,
F. W.
Long
,
R. G.
McKee
,
J. A.
Mills
,
J. K.
Moore
,
J. J.
Ramirez
,
B. S.
Stoltzfus
,
K. W.
Struve
, and
J. R.
Woodworth
, “
Dielectric-breakdown tests of water at 6 MV
,”
Phys. Rev. ST Accel. Beams
12
,
010402
(
2009
).
40.
M.
Marci
and
I.
Kolcunova
, “
Electric breakdown strength measurement in liquid dielectrics
,” in
Proceedings of the 9th International Conference on Environment and Electrical Engineering (EEEIC), Prague, Czech Republic, 16–19 May 2010
(
IEEE
,
2010
), p.
427
.
41.
D. T.
Conroy
,
O. K.
Matar
,
R. V.
Craster
, and
D. T.
Papageorgiou
, “
Breakup of an electrified, perfectly conducting, viscous thread in an AC field
,”
Phys. Rev. E
83
,
066314
(
2011
).
You do not currently have access to this content.