The development of viscous fingers in circular Hele-Shaw cells is a classical and widely studied fluid mechanical problem. The introduction of wall elasticity (via the replacement of one of the bounding plates by an elastic membrane) can weaken or even suppress the fingering instability, but it also makes the system susceptible to additional solid-mechanical instabilities. We show that in elastic-walled Hele-Shaw cells that are bounded by sufficiently thin elastic sheets the (fluid-based) viscous fingering instability can arise concurrently with a (solid-based) wrinkling instability. We study the interaction between these distinct instabilities, using a theoretical model that couples the depth-averaged lubrication equations for the fluid flow to the Föppl-von Kármán equations, which describe the deformation of the thin elastic sheet. We employ a linear stability analysis to determine the growth rate of non-axisymmetric perturbations to the axisymmetrically expanding bubble, and perform direct numerical simulations to study the nonlinear interactions between the instabilities. We show that the system's behaviour may be characterised by a non-dimensional parameter that indicates the strength of the fluid-structure interaction. For small [large] values of this parameter, the system's behaviour is dominated by viscous fingering [wrinkling], with strong interactions between the two instabilities arising in an intermediate regime.

1.
J. R.
Lister
,
G. G.
Peng
, and
J. A.
Neufeld
, “
Viscous control of peeling an elastic sheet by bending and pulling
,”
Phys. Rev. Lett.
111
,
154501
(
2013
).
2.
C.
Michaut
, “
Dynamics of magmatic intrusions in the upper crust: Theory and applications to laccoliths on Earth and the Moon
,”
J. Geophys. Res.
116
,
B05205
, doi: (
2011
).
3.
M.
Heil
,
A. L.
Hazel
, and
J. A.
Smith
, “
The mechanics of airway closure
,”
Respir. Physiol. Neurobiol.
163
,
214
221
(
2008
).
4.
C.
Davies
,
P. W.
Carpenter
,
R.
Ali
, and
D. A.
Lockerby
, “
Disturbance development in boundary layers over compliant surfaces
,” in
Proceedings of the Sixth IUTAM Symposium on Laminar-Turbulent Transition, 2006
(
Springer
,
2006
), pp.
225
230
.
5.
M. S.
Carvalho
and
L. E.
Scriven
, “
Deformable roll coating flows: Steady state and linear perturbation analysis
,”
J. Fluid Mech.
339
,
143
172
(
1997
).
6.
M. S.
Carvalho
and
L. E.
Scriven
, “
Three-dimensional stability analysis of free surface flows: Application to forward deformable roll coating
,”
J. Comput. Phys.
151
,
534
562
(
1999
).
7.
M.
Taroni
and
D.
Vella
, “
Multiple equilibria in a simple elastocapillary system
,”
J. Fluid Mech.
712
,
273
294
(
2012
).
8.
A.
Boudaoud
,
J.
Bico
, and
B.
Roman
, “
Elastocapillary coalescence: Aggregation and fragmentation with a maximal size
,”
Phys. Rev. E
76
,
060102
(
2007
).
9.
C.
Duprat
,
S.
Protière
,
A. Y.
Beebe
, and
H. A.
Stone
, “
Wetting of flexible fibre arrays
,”
Nature (London)
482
,
510
513
(
2012
).
10.
J. D.
Chen
, “
Growth of radial viscous fingers in a Hele-Shaw cell
,”
J. Fluid Mech.
201
,
223
242
(
1989
).
11.
L.
Paterson
, “
Radial fingering in a Hele-Shaw cell
,”
J. Fluid Mech.
113
,
513
529
(
1981
).
12.
P. G.
Saffman
and
G. I.
Taylor
, “
The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid
,”
Proc. R. Soc. London, Ser. A
245
,
312
329
(
1958
).
13.
D.
Pihler-Puzović
,
P.
Illien
,
M.
Heil
, and
A.
Juel
, “
Suppression of complex fingerlike patterns at the interface between air and a viscous fluid by elastic membranes
,”
Phys. Rev. Lett.
108
,
074502
(
2012
).
14.
D.
Pihler-Puzović
,
R.
Périllat
,
M.
Russell
,
A.
Juel
, and
M.
Heil
, “
Modelling the suppression of viscous fingering in elastic-walled Hele-Shaw cells
,”
J. Fluid Mech.
731
,
162
183
(
2013
).
15.
T. T.
Al Housseiny
,
I. C.
Christov
, and
H. A.
Stone
, “
Two-phase fluid displacement and interfacial instabilities under elastic membranes
,”
Phys. Rev. Lett.
111
,
034502
(
2013
).
16.
L. D.
Landau
and
E. M.
Lifshitz
,
Theory of Elasticity
, 2nd ed. (
Pergamon Press
,
Oxford
,
1970
).
17.
B.
Davidovitch
,
R. D.
Schroll
,
D.
Vella
,
M.
Adda-Bedia
, and
E. A.
Cerda
, “
Prototypical model for tensional wrinkling in thin sheets
,”
Proc. Natl. Acad. Sci. U.S.A.
108
,
18227
18232
(
2011
).
18.
J.-C.
Géminard
,
R.
Bernal
, and
F.
Melo
, “
Wrinkle formation in axi-symmetrically stretched membranes
,”
Eur. Phys. J. E
15
,
117
126
(
2004
).
19.
J.
Huang
,
B.
Davidovitch
,
C. D.
Santangelo
,
T. P.
Russell
, and
N.
Menon
, “
Smooth cascade of wrinkles at the edge of a floating elastic film
,”
Phys. Rev. Lett.
105
,
038302
(
2010
).
20.
D.
Vella
,
A.
Ajdari
,
A.
Vaziri
, and
A.
Boudaoud
, “
Wrinkling of pressurized elastic shells
,”
Phys. Rev. Lett.
107
,
174301
(
2011
).
21.
D. P.
Holmes
and
A. J.
Crosby
, “
Draping films: A wrinkle to fold transition
,”
Phys. Rev. Lett.
105
,
038303
(
2010
).
22.
H.
King
,
R. D.
Schroll
,
B.
Davidovitch
, and
N.
Menon
, “
Elastic sheet on a liquid drop reveals wrinkling and crumpling as distinct symmetry-breaking instabilities
,”
Proc. Natl. Acad. Sci. U.S.A.
109
,
9716
9720
(
2012
).
23.
L.
Pocivavsek
,
R.
Dellsy
,
A.
Kern
,
S.
Johnson
,
B.
Lin
,
K. Y. C.
Lee
, and
E.
Cerda
, “
Stress and fold localization in thin elastic membranes
,”
Science
320
,
912
916
(
2008
).
24.
H.
Vandeparre
,
M.
Pineirua
,
F.
Brau
,
B.
Roman
,
J.
Bico
,
C.
Gay
,
W.
Bao
,
C. N.
Lau
,
P. M.
Reis
, and
P.
Damman
, “
Wrinkling hierarchy in constrained thin sheets from suspended graphene to curtains
,”
Phys. Rev. Lett.
106
,
224301
(
2011
).
25.
J.
Huang
,
M.
Juszkiewicz
,
W. H.
de Jeu
,
E.
Cerda
,
T.
Emrick
,
N.
Menon
, and
T. P.
Russell
, “
Capillary wrinkling of floating thin polymer films
,”
Science
317
,
650
(
2007
).
26.
R. D.
Schroll
,
M.
Adda Bedia
,
E.
Cerda
,
J.
Huang
,
N.
Menon
,
T. P.
Russell
,
K. B.
Toga
,
D.
Vella
, and
B.
Davidovitch
, “
Capillary deformations of bendable films
,”
Phys. Rev. Lett.
111
,
014301
(
2013
).
27.
D.
Vella
,
M.
Adda-Bedia
, and
E. A.
Cerda
, “
Capillary wrinkling of elastic membranes
,”
Soft Matter
6
,
5778
5782
(
2010
).
28.
J.
Chopin
,
D.
Vella
, and
A.
Boudaoud
, “
The liquid blister test
,”
Proc. R. Soc. A
464
,
2887
2906
(
2008
).
29.
O.
Reynolds
, “
On the theory of lubrication and its application to Beauchamp Tower's experiment
,”
Philos. Trans. R. Soc. London, Ser. A
177
,
157
234
(
1886
).
30.
M.
Heil
, and
A. L.
Hazel
, “
oomph-lib – an object-oriented multi-physics finite-element library
,” in
Fluid-Structure Interaction
, edited by
M.
Schäfer
and
H.-J.
Bungartz
(
Springer
,
2006
), pp.
19
49
, oomph-lib is available as open-source software at http://www.oomph-lib.org.
31.
E.
Lajeunesse
and
Y.
Couder
, “
On the tip-splitting instability of viscous fingers
,”
J. Fluid Mech.
419
,
125
149
(
2000
).
32.
K. B.
Toga
,
J.
Huang
,
K.
Cunningham
,
T. P.
Russell
, and
N.
Menon
, “
A drop on a floating sheet: Boundary conditions, topography and formation of wrinkles
,”
Soft Matter
9
,
8289
8296
(
2013
).
33.
F.
Brau
,
P.
Damman
,
H.
Diamant
, and
T. A.
Witten
, “
Wrinkle to fold transition: Influence of the substrate response
,”
Soft Matter
9
,
8177
8186
(
2013
).
34.
H.
Diamant
and
T. A.
Witten
, “
Compression induced folding of a sheet: An integrable system
,”
Phys. Rev. Lett.
107
,
164302
(
2011
).
35.
See supplementary material at http://dx.doi.org/10.1063/1.4864188 for a movie that illustrates the evolution of the non-axisymmetric instabilities for the five cases considered in Sec. IV.
36.
F.
Cirak
and
M.
Ortiz
, “
Fully c1-conforming subdivision elements for finite-deformation thin-shell analysis
,”
Int. J. Numer. Methods Eng.
51
,
813
833
(
2001
).
37.
F.
Cirak
,
M.
Ortiz
, and
A.
Pandolfi
, “
A cohesive approach to thin-shell fracture and fragmentation
,”
Comput. Methods Appl. Mech. Eng.
194
,
2604
2618
(
2005
).
38.
H.
Hedfi
,
A.
Ghith
, and
H. B. H.
Salah
, “
Study of dynamic drape behaviour of fabric using FEM
,”
Int. J. Eng. Sci. Technol.
3
,
6554
6563
(
2011
).
39.
X.
Li
and
K.
Sarkar
, “
Front tracking simulation of deformation and buckling instability of a liquid capsule enclosed by an elastic membrane
,”
J. Comput. Phys.
227
,
4998
5018
(
2008
).
40.
R.
Rossi
,
M.
Lazzari
,
R.
Vitaliani
, and
E.
Onate
, “
Simulation of light-weight membrane structures by wrinkling model
,”
Int. J. Numer. Methods Eng.
62
,
2127
2153
(
2005
).

Supplementary Material

You do not currently have access to this content.