Liquid films on cylindrical bodies like wires or fibres disintegrate if their length exceeds a critical size (Plateau-Rayleigh instability). Stabilization can be achieved by an axial oscillation of the solid core provided that a suitable combination of forcing amplitude and frequency is given. To investigate the stabilizing effect, direct numerical simulations (DNS) of the axisymmetric problem are conducted with a height function based solver. It is found that the mechanism of film stabilization is caused by the interaction between an inertia dominated region (high film thickness) and a viscosity dominated region (low film thickness). Replenishing of the thin film region is thereby supported while depleting is suppressed, finally leading to a stable film flow on an oscillating cylinder. To the end, a systematic variation of the main system parameters, e.g., the Weber number, the ratio between the radius of the inner core and the average film coating thickness, and the oscillation frequency is presented and the influence of the parameters discussed.

1.
W. S.
Rayleigh
, “
On the instability of jets
,”
Proc. London Math. Soc.
s1-10
,
4
13
(
1878
).
2.
W. S.
Rayleigh
, “
On the instability of cylindrical fluid surfaces
,”
Philos. Mag.
34
,
177
180
(
1892
).
3.
S. L.
Goren
, “
The instability of an annular thread of fluid
,”
J. Fluid Mech.
12
,
309
(
1962
).
4.
S. L.
Goren
, “
The shape of a thread of liquid undergoing breakup
,”
J. Colloid Sci.
19
,
81
86
(
1964
).
5.
F.
Mashayek
and
N.
Ashgriz
, “
Instability of liquid coatings on cylindrical surfaces
,”
Phys. Fluids
7
,
2143
2153
(
1995
).
6.
D. D.
Joseph
,
K.
Nguyen
, and
G.
Beavers
, “
Non-uniqueness and stability of the configuration of flow of immiscible fluids with different viscosities
,”
J. Fluid Mech.
141
,
319
345
(
1984
).
7.
G. H.
Wolf
, “
Dynamic stabilization of interchange instability of a liquid-gas interface
,”
Phys. Rev. Lett.
24
,
444
446
(
1970
).
8.
E.
Talib
and
A.
Juel
, “
Instability of a viscous interface under horizontal oscillation
,”
Phys. Fluids
19
,
092102
(
2007
).
9.
D.
Halpern
and
A. L.
Frenkel
, “
Saturated Rayleigh-Taylor instability of an oscillating Couette film flow
,”
J. Fluid Mech.
446
,
67
93
(
2001
).
10.
M.
Blyth
, “
Effect of pulsation on two-layer channel flow
,”
J. Eng. Math.
59
,
123
137
(
2007
).
11.
A. V.
Coward
and
D. T.
Papageorgiou
, “
Nonlinear stability of oscillatory core-annular flow: A generalized Kuramoto-Sivashinsky equation with time period coefficients
,”
Z. Angew. Math. Phys.
46
,
1
39
(
1995
).
12.
A. V.
Coward
and
Y. Y.
Renardy
, “
Small-amplitude oscillatory forcing on two-layer plane channel flow
,”
J. Fluid Mech.
334
,
87
109
(
1997
).
13.
D.
Halpern
,
J. A.
Moriarty
, and
J. B.
Grotberg
, “
Capillary-elastic instabilities with an oscillatory forcing function
,” in
IUTAM Symposium on Non-linear Singularities in Deformation and Flow
(
Springer Science + Business Media Dordrecht
,
1999
), pp.
243
255
.
14.
U.
Thiele
,
J. M.
Vega
, and
E.
Knobloch
, “
Long-wave Marangoni instability with vibration
,”
J. Fluid Mech.
546
,
61
87
(
2005
).
15.
S. P.
Lin
and
J. N.
Chen
, “
The mechanism of surface wave suppression in film flow down a vertical plane
,”
Phys. Fluids
10
,
1787
1792
(
1998
).
16.
L.
Moldavsky
,
M.
Fichman
, and
A.
Oron
, “
Dynamics of thin liquid films falling on vertical cylindrical surfaces subjected to ultrasonic forcing
,”
Phys. Rev. E
76
,
045301
(
2007
).
17.
P.
Brunet
,
J.
Eggers
, and
R. D.
Deegan
, “
Vibration-induced climbing of drops
,”
Phys. Rev. Lett.
99
,
144501
(
2007
).
18.
O.
Haimovich
and
A.
Oron
, “
Nonlinear dynamics of a thin liquid film on an axially oscillating cylindrical surface
,”
Phys. Fluids
22
,
032101
(
2010
).
19.
O.
Haimovich
and
A.
Oron
, “
Nonlinear dynamics of a thin nonisothermal liquid film on an axially oscillating cylindrical surface
,”
Phys. Rev. E
84
,
061605
(
2011
).
20.
O.
Haimovich
and
A.
Oron
, “
Nonlinear dynamics of a thin liquid film on an axially oscillating cylindrical surface subjected to double-frequency forcing
,”
Phys. Rev. E
87
,
052403
(
2013
).
21.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
225
(
1981
).
22.
J.
Brackbill
,
D.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
,
335
354
(
1992
).
23.
H.
Rusche
, “
Computational fluid dynamics of dispersed two-phase flows at high phase fractions
,” Ph.D. thesis (
Imperial College, University of London
,
2002
).
24.
W.
Rohlfs
,
F. G.
Dietze
,
D.
Haustein
, and
R.
Kneer
, “
Two-phase electrohydrodynamic simulations using a volume-of-fluid approach: A comment
,”
J. Comput. Phys.
231
,
4454
4463
(
2012
).
25.
J.
Delteil
,
S.
Vincent
,
A.
Erriguible
, and
P.
Subra-Paternault
, “
Numerical investigations in Rayleigh breakup of round liquid jets with VOF methods
,”
Comput. Fluids
50
,
10
23
(
2011
).
26.
S. V.
Jalikop
and
A.
Juel
, “
Oscillatory transverse instability of interfacial waves in horizontally oscillating flows
,”
Phys. Fluids
24
,
044104
(
2012
).
You do not currently have access to this content.